ARTIFICIAL NEURAL NETWORK MODELS FOR PREDICTION OF STANDARDIZED PRECIPITATION INDEX IN CENTRAL MEXICO

Rafael Magallanes-Quintanar\(^1\), Carlos Eric Galván-Tejada\(^1\), Jorge Issac Galván-Tejada\(^1\), Santiago de Jesús Méndez-Gallegos\(^2\), Fidel Blanco-Macías\(^3\), Ricardo David Valdez-Cepeda*\(^3\)

\(^2\) Colegio de Posgraduados Campus San Luis Potosí. Iturbide No. 73, Salinas de Hidalgo, San Luis Potosí, México. C. P. 78600.
\(^3\) Universidad Autónoma Chapingo. Centro Regional Universitario Centro Norte. Cruz del Sur No. 100, Col. Constelación, El Orito, Zacatecas, Zacatecas, México. C. P. 98085.

* Author for correspondence: vacrida@hotmail.com

ABSTRACT

Globally, an increase in the occurrence of droughts may be due to the effects of climate change on rainfall patterns. Drought prediction based on historical rainfall behavior can be very useful in sectors where water is a critical element, such as rain-fed agriculture. Therefore, drought classification and characterization based on drought index prediction models could aid in mitigating their negative effects in such water-sensitive sectors. The primary goal of this paper was to test a Multilayer Perceptron Artificial Neural Network as a model to forecast the monthly Standardized Precipitation Index in north-central Mexico using rainfall data from the 1964–2014 period. The model was obtained using the Hyperbolic Tangent activation function and the optimization method from the Adaptive Moment Estimation algorithm. The model used a 26-12-1 network architecture with 4 weights and 365 trainable parameters. The scatter plot analysis between predicted and observed Standardized Precipitation Index values for the test dataset resulted in a Coefficient of Determination between 0.84 and 0.88. Based on quantitative statistics averaged across the test set, the Artificial Network Model performed substantially well in predicting the Standardized Precipitation Index at the four studied regions. This was confirmed by an all-region average value of the performance statistics Mean Absolute Error (0.081), Mean Square Error (0.014) and the Coefficient of Determination (0.867). We conclude that the Artificial Network models developed and tested in this research provided adequate monthly Standardized Precipitation Index skills for the analyzed stations in the studied territory.

Key words: Drought, rainfall, artificial intelligence, SPI.

INTRODUCTION

The vulnerability of human activities to extreme events such as floods and droughts due to changes in rainfall distribution and intensity is an important research topic (Kharin et al., 2007; Angheluță and Badea, 2015). A meteorological drought occurs when the observed precipitation is less than the long-term average (Choubin et al., 2016). Droughts have a significant negative effect because they reduce freshwater
flows, which has a great impact on water resource planning and management (Ali et al., 2017). There have been numerous approaches proposed to estimate droughts. Drought indices are some of the most extensively used methods. McKee et al. (1993) developed the Standardized Precipitation Index (SPI) to categorize observed rainfall as a standardized deviation from a rainfall probability distribution function. In recent years, SPI has been used as a method for climatic zone classification and as a drought indicator, allowing for comparisons to be made in space and time (Naresh Kumar et al., 2009). Because this index only uses records of precipitation data over time, it has a significant advantage over other indices due to its ease of calculation and temporal flexibility. Mahfouz et al. (2016) found that SPI has the potential to be used for monitoring drought conditions in forestry and agriculture in Lebanon. Giddings et al. (2005) used SPI to establish dynamically consistent precipitation zones throughout Mexico. However, SPI can be used to define much smaller and more detailed areas. Magallanes-Quintanar et al. (2019) used it to organize monthly time series from the state of Zacatecas in Mexico into small groups with similar regional precipitation regimes. The current trends suggest less than median precipitation across the state of Zacatecas. Nevertheless, SPI forecasts for the near future have been little studied, so they remain practically unknown. This type of information could be essential to adjust the activities of the inhabitants based on planned drought adaptation strategies. Recently, models have also been developed not only for assessment but also drought forecasting. Although, historically, time series of meteorological variables such as monthly precipitation and temperature have been extensively modeled using linear techniques such as autoregressive moving average (ARMA) and seasonal autoregressive integrated moving average (SARIMA), it should be noted that the use of artificial intelligence (AI) models has shown good performance and accuracy in drought forecasting. A neural network is an information processing method which determines patterns from data in an adaptive manner (Ali et al., 2017).

Specifically, much research in recent years has focused in the use of Artificial Neural Network (ANN) models as a useful data-driven tool for drought index forecasting. Ozger et al. (2011) developed a wavelet fuzzy logic model to estimate a Drought Severity Index. The SPI was predicted using an ARIMA model and matched to machine learning approaches such as ANNs by Belayneh et al. (2014). Masinde (2014) used a blend of ANN and Effective Drought Index as a drought forecasting approach. Deo and Şahin (2015) analyzed the feasibility of the ANN as a data-driven model to forecast the monthly SPI. Choubin et al. (2016) applied several data-driven techniques to predict SPI. Ali et al. (2017) used a multilayer perceptron neural network algorithm for drought forecasting and Soh et al. (2018) worked with a Wavelet-ARIMA-ANN model and the latest Wavelet-Adaptive Neuro-Fuzzy Inference System model to predict the SPI.

Since Multilayer Perceptron neural network model (MLP) is one of the leading types of ANN’s methods for modeling hydrological data (Ali et al., 2017), the approach in this study was to develop a MLP Network model over a 50-year period (1964–2014) in
central Mexico, aiming to: (a) predict regional Standardized Precipitation Index, and (b) forecast regional Standardized Precipitation Index for 12 months (near future).

MATERIALS AND METHODS

Precipitation data
The regional time series of Standardized Precipitation Index assessed by Magallanes-Quintanar et al. (2019) were obtained from a database of long-term records (50 years, 1964–2014) of monthly precipitation acquired at 31 weather stations located within the territory of the Mexican state of Zacatecas (Figure 1). The database was provided by the Mexican National Water Commission (CONAGUA). All datasets were inspected for missing values and outliers.

Standardized Precipitation Index
McKee et al. (1993) defined the Standardized Precipitation Index (SPI) as the number of standard deviations that observed cumulative precipitation deviates from the climatological mean. The SPI was developed mainly for specifying and monitoring droughts. As presented by Koudahe et al. (2017), the SPI is computed as follows:

A gamma function using monthly rainfall data is defined as:

\[g(x) = \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} \]

for \(x > 0 \).

The density probability function \(g(x) \), has \(\alpha \) as a shape parameter \((\alpha > 0) \), \(\beta \) as a scale parameter \((\beta > 0) \), and

\[\Gamma(\alpha) = \int_0^\alpha y^{\alpha-1} e^{-1} dy \]

where \(\Gamma(\alpha) \) is the gamma function.

The parameters \(\alpha \) and \(\beta \) are calculated by means of:

\[\alpha = \frac{1}{4A} \left(1 + \sqrt{1 + \frac{4A}{3}} \right) \]

\[\beta = \frac{x}{\alpha} \]

\[A = \ln(\bar{x}) - \frac{\sum \ln(\bar{x})}{n} \]
Figure 1. Study region of the Zacatecas state territory in Mexico and the location of weather stations.
where \(n \) is the number of rainfall observations and \(\bar{x} \) is the arithmetic mean over a time scale. A cumulative probability \(G(x) \) of an observed volume of rainfall per each month and time scale (if \(\alpha \) and \(\beta \) estimators were used to integrate the probability density function with respect to \(x \)) is calculated as follows:

\[
G(x) = \int_0^x g(x) dx = \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^x x^{\alpha - 1} e^{-\frac{x}{\beta}} dx
\]

When substituting \(t \) for \(\frac{x}{\beta} \) in the preceding equation, the result is the incomplete gamma function:

\[
G(x) = \frac{1}{\Gamma(\alpha)} \int_0^x t^{\alpha - 1} e^{-t} dt
\]

Nevertheless, the gamma distribution function is undefined for \(x = 0 \) and \(q = P(x = 0) > 0 \); where \(P(x = 0) \) is the probability of zero precipitation. Thus, the actual probability of non-exceedance \(H(x) \) should be calculated as follows (Edwards and McKee, 1997; Usman et al., 2014):

\[
H(x) = q + (1 - q)G(x)
\]

Where \(H(x) \) is the actual probability of non-exceedance and \(q \) the probability of \(x = 0 \). If \(m \) is the number of zeros in a rainfall time series sample of size \(n \), then \(q \) is assessed as:

\[
q = \frac{m}{n}
\]

Lastly, to calculate the SPI, the cumulative probability distribution \(H(x) \) is standardized to a normal variable \(Z \sim N(0,1) \). The SPI results can be interpreted as wet or drought periods as pointed out by McKee et al. (1993).

Several time scales can be used to calculate the SPI, with changes in rainfall affecting different aspects of the hydrological cycle (Koudahe et al., 2017). As pointed out by Caloiiero (2017), the 6-month SPI describes droughts that affect plant life and agriculture, whereas the 12-month SPI describes droughts that can affect water supplies/reserves. In this study, we evaluated the SPI on a 12-month time scale.

Due to the difficulty of manually calculating the SPI, several computer programs have been developed to solve this task. One of the most widely used programs is the one developed by the United States National Drought Mitigation Centre. The program ‘SPIGenerator’ is freely available at http://drought.unl.edu/droughtmonitoring/SPI/SPIProgram.aspx. In this research we used the R system 4.0.2 (R Core Team, 2020).
and the ‘SPEI’ package (Beguería and Vicente-Serrano, 2013) for SPI estimation. Both are freely available at the Comprehensive R Archive Network (https://www.cran.r-project.org/).

The interannual comparison for SPI estimated values at timescale of 12 months for each region are shown (Figure 2).

Neural Network Forecasting

The Artificial Neural Network (ANN) models can identify the nonlinear relationships between the input and output data using computational paradigms that attempt to represent the brain neural connections (McCulloch and Pitts, 1943). To forecast climatological time series, ANN models have been used successfully. Among them, the Multilayer Perceptron (MLP) Network is one of the most widely used ANN approaches to model hydrological information (Wang *et al.*, 2006; Ali *et al.*, 2017). It has been proven that ANN could be a more efficient alternative than traditional methods for modeling time-series with non-linear behavior (Farajzadeh *et al.*, 2014).

A simple artificial neural network is the feed-forward neural network. In this kind of ANN, the information is processed in one direction through the hidden nodes and does not form a cycle. The structure of the feedforward neural network includes, at least, the input layer and the number of features or variables. The first includes the neurons that receive the inputs and transmit the information to the hidden layers. The second includes the number of features or variables that must equal the number of neurons

![Figure 2](image_url)
Figure 2. Regional SPI time-series at 12-month timescale for the Zacatecas state territory.
in this layer. The hidden layers are positioned between the input and output layers, they may contain a significant number of neurons which apply transformations to the input information before passing it to the next layer. As the network is trained, the weights are renewed to be more predictive. The neuron weights refer to the strength or amplitude of a connection between an input and a neuron. The forecasted feature or variable that depends on the type of examined model is represented by the output layer.

Typically, the data processing through a feed-forward network (Figure 3) follows the next steps:

1. Multiplication of weights and inputs: The inputs are multiplied by the designated weight values.
2. Adding the biases: The result of the previous phase is added to their respective biases and the modified inputs are then summed up to acquire a single value.
3. Activation: An activation function introduces non-linear properties in the hidden layer and transfer the result to the output layer. It is called an activation/transfer function because it controls the inception at which a neuron is triggered and the strength of the output data.
4. Output signal: The weighted sum achieved in the previous phase is turned into an output signal.

In the MLP model, we suppose that there are \(n \) layers. The first layer is the input layer and the last one (\(n_{th} \)) is the output layer. Hence, the hidden layers go from 2 to \(n-1 \) layers. In this model, the neuron is the main processing unit which calculates the weighted sum of its input signals. As explained by Deo and Şahin (2015), a single neuron may be described by:

\[
u_k = \sum_{j=1}^{m} w_k x_j
\]

![Figure 3. Neural networking pipeline diagram.](image-url)
where x_i to x_m are the input signals, and w_{k1} to w_{km} are the synaptic weights of the k neuron. The output signal of the neuron is defined as:

$$y_k = f(u_k + b_k)$$

where u_k is the linear combination output from input signals, b_k is the bias and f the activation function that could be (among others): binary step, linear, sigmoid, hyperbolic tangent, SoftMax, rectified linear unit, exponential linear units, and swish (Sharma et al., 2020).

Generally, neural networks have at least only one input layer and one output layer, but the number of hidden layers may differ; the selection of these variables is domain-specific or varies on the problem (Ali et al., 2017). Furthermore, the internal structure (inputs and hidden units) and the layout of those ANN’s units are difficult to elucidate and are often established using a trial-and-error approach or established in advance from prior experience.

After the selection of variables or features, the development of a MLP starts with the training, testing, and validation of the neural network with the aim of learning. It is possible to fine-tune the network after this step by varying the architecture after this step. Once the network architecture is established, the model can be tested and verified. The final step is model forecasting.

The Python programming language is widely used in science and data analysis. Moreover, Keras and Tensor flow are approachable and highly-productive interfaces for solving machine learning problems. In this research we used the Python language version 3.85 (Python Software Foundation, https://www.python.org/) and Google’s open-source machine learning framework ‘TensorFlow’ (Abadi et al., 2016). In addition, we used the high-level neural network API ‘Keras’ (Chollet, 2015) for fitting an ANN to 4 regional times-series (Semi-desert, Highlands, Mountains and Canyons) of SPI yielded by Magallanes-Quintanar et al. (2019) to forecast the SPI-12 index values in each region. Simulations were performed on an AMD Ryzen 7 processor running at 2.3 GHz.

The first 40 years of data (80 %) for each regional SPI-12 time-series (1965–2004) were used as a training dataset for the model prior to implementing the architecture model. After the selection of the appropriate parameters, SPI values were validated or tested using the remaining 20 % of data (2005–2014). As previously stated, the architecture model was determined through trial-and-error. In our case, we considered the works of Deo and Şahin (2015) and Ali et al. (2017) to set the MLP layout. The neural network training by means of Keras-Tensor Flow was specified to use a sequential model with Hyperbolic Tangent as activation function and Adaptative Moment Estimation as optimizer algorithm (Kingma and Ba, 2015). Additionally, we selected 1000 epochs as hyperparameter of gradient descent to control the number of passes through the time-series dataset.
The algorithm can train the network in any difficult and complex situation and offers early stopping to prevent overfitting. When evaluating ANN models, accuracy metrics or performance measures are used for comparison models. Among several performance measures or metrics, in the present research, we used the Mean Absolute Error (MAE), the Mean Square Error (MSE), and the Coefficient of Determination (R^2).

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |(SPI_{p_i} - SPI_{o_i})|$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (SPI_{p_i} - SPI_{o_i})^2$$

MAE is a measure of the average deviation of the predicted values from the corresponding observed values and can provide information on long term performance of the models; the lower MAE, the better is the long-term model prediction. MSE is a measure of the difference between the observed and calculated values; the lower the MSE, the more accurate the prediction is (Jierula et al., 2021). The last metric evaluation was the R^2 as efficiency criterion representing the percentage of the initial uncertainty explained by the model. A good model should have a lower MSE and MAE, both indicate low-accumulated errors; then, the best fit between observed and calculated values, which is unlikely to occur, would have MSE=0 and $R^2=1$.

Furthermore, to assess the prediction error (PE) of the model, the difference between the observed and predicted SPI values was used (Chapra and Canale, 2006):

$$PE = SPI_{o_i} - SPI_{p_i}$$

Because the MLP model encapsulates the inner characteristics of a complex process, it is possible to predict future values after defining the features or variables, establishing the model and their parameters, training and validating the model. To that end, a 12-month database was built to make SPI-12 variable predictions.

RESULTS AND DISCUSSION

The training process resulted in a 26-13-1 network architecture with 4 weights and a total of 365 trainable parameters. The above architecture includes a dense layer with shape (none, 1, 26) with 338 parameters, a flatten layer with shape (none, 26) with 0 parameters and a dense, 1 layer with shape (none, 1) with 27 parameters. The established architecture was in line with the works of Deo and Şahin (2015) who chose an architecture 18-43-1 and Ali et al. (2017) who selected an architecture of 30-8-1.

The ANN SPI-12 observed and predicted values for Semi-desert, Highlands, Mountains and Canyon regions are shown (Figure 4). In general, the estimated MSE
and MAE values were low (Table 1). Those results indicate that the 4 regional SPI model’s performance were adequately accurate.

The performance of ANN models was evaluated using a scatter plot (Figure 5) and linear regression statistics for all four regions during the validation period (2005-2014) (Table 2). For the optimal ANN models at each region, \(y \)-intercepts (\(\beta_0 \)) oscillated between 0.003 (Highlands region) and 0.034 (Canyons region), and the gradient of the linear fit (\(\beta_1 \)) ranged from 0.84 (Canyons region) to 0.93 (Semi-desert region). The

![Figure 4](image)

Figure 4. Observed and predicted regional SPI time-series for the Zacatecas state territory.

<table>
<thead>
<tr>
<th>Region</th>
<th>MSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-desert</td>
<td>0.015</td>
<td>0.082</td>
</tr>
<tr>
<td>Highlands</td>
<td>0.013</td>
<td>0.078</td>
</tr>
<tr>
<td>Mountains</td>
<td>0.014</td>
<td>0.071</td>
</tr>
<tr>
<td>Canyons</td>
<td>0.015</td>
<td>0.083</td>
</tr>
</tbody>
</table>

Table 1. Quantitative measures of the ANN performance in validation phase for regional SPI time series for the Zacatecas State, Mexico.

Key measures: Mean Square Error (MSE) and Mean Absolute Error (MAE).
Scientific article

The correlation coefficient (r) stretched between 0.91 (Semi-desert region) and 0.93 (Canyons region). Hence, models indicated high correspondence between the predicted and the observed SPI values.

Overall, there was good visual concordance among the observed and the predicted SPI values over the 108 months during the validation period (Figure 5). This was consistent with the results pointed out by summarized statistics of the scatter plot between the predicted and the observed SPI values (Table 2). To infer the overall prediction skill of the ANN model, a contrast of its performance was achieved using the performance statistics for all months within the validation dataset by means of the MSE, MAE, and R^2 (Tables 1 and 2).

![Correlation between the original SPI values and the predicted ANN SPI values during the validating period for regional SPI time series for the Zacatecas State, Mexico.](image)

Table 2. Assessment of ANN model performance based on linear regression formula ($SPI_p = \beta_0 + \beta_1 SPI_o$) of observed SPI values (SPI_o) and predicted SPI values (SPI_p) during the validating period for regional SPI time series for the Zacatecas state, Mexico.

<table>
<thead>
<tr>
<th>Region</th>
<th>β_0</th>
<th>β_1</th>
<th>R^2</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-desert</td>
<td>0.013</td>
<td>0.931</td>
<td>0.843</td>
<td>0.918</td>
</tr>
<tr>
<td>Highlands</td>
<td>0.003</td>
<td>0.902</td>
<td>0.879</td>
<td>0.938</td>
</tr>
<tr>
<td>Mountains</td>
<td>0.021</td>
<td>0.866</td>
<td>0.861</td>
<td>0.933</td>
</tr>
<tr>
<td>Canyons</td>
<td>0.034</td>
<td>0.844</td>
<td>0.878</td>
<td>0.937</td>
</tr>
</tbody>
</table>
Evidence suggests that the best ANN model predictions correspond to the Highlands regions. The smallest values of both MAE (≈0.078) and MSE (≈0.013), as well as the highest R^2 (0.879), were associated to this region. The Mountains regions had the second performance, followed by the Semi-desert and Canyons regions. Moreover, the higher values of MAE and MSE correspond to the ANN model prediction for the Canyons regions. Overall, the ANN models demonstrated good prediction skill for all study regions. The probability under normal distribution of prediction error representing under-predictions (PE < 0) and over-predictions (PE > 0) by the ANN models is shown (Table 3). In general, the under-prediction values were higher than the over-prediction values for all regions. This implies that ANN models under-predicted the SPI for all regions, with the Canyons region having the largest difference with a probability of 59.34 % and the Semi-desert region having the smallest difference with a probability of 51.71 %. On the other hand, the minimum probability value of over-prediction with 40.66 % was found for the Canyons and the maximum probability value of over-prediction error was found for the Semi-desert with 48.29 %.

Table 3. Probability under normal distribution of prediction error (PE) for observed SPI values (SPIo) and the predicted SPI values (SPIp) during the validating period for regional SPI time series for the state of Zacatecas, Mexico.

<table>
<thead>
<tr>
<th>Region</th>
<th>PE < 0</th>
<th>PE > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-desert</td>
<td>0.517</td>
<td>0.483</td>
</tr>
<tr>
<td>Highlands</td>
<td>0.550</td>
<td>0.450</td>
</tr>
<tr>
<td>Mountains</td>
<td>0.535</td>
<td>0.465</td>
</tr>
<tr>
<td>Canyons</td>
<td>0.593</td>
<td>0.407</td>
</tr>
</tbody>
</table>

Notably, neural networks have demonstrated to be extremely useful methods for empirically forecasting hydrological variables (Daliakopoulos et al., 2005; Farajzadeh et al., 2014). Our results are comparable with those of Deo and Şahin (2015), Ali et al. (2017) and Soh et al. (2018) who used the ANN model to forecast the monthly standardized precipitation index. Moreover, our results lend support to those of Giddings et al. (2005) because our approach allows for derivation of smaller and detailed regional zones in Mexico by means of the SPI.

CONCLUSIONS

Recently, drought prediction is a challenging issue in hydrology, water resources management, and rainfed agriculture, among other fields, due to the negative impacts of droughts on human activities related to water use. Multilayer perceptron models were used to predict the values of four monthly Standardized Precipitation Index (SPI) time series from the Mexican Zacatecas State. The models were trained and tested using the regional SPI time series and the output variables were the predicted by the SPI’s.
After trial and error, the best network architecture was a combination of 26-13-1 as the input-hidden-output neurons based on smallest MSE and largest coefficient of determination for each region. A good agreement between observed and predicted SPI values using the scatter plot analysis and their corresponding model for each region. ANN models performed very well in predicting regional SPI values in terms of quantitative statistics over the test set.

In general, the developed and tested ANN models reflect satisfactory prediction skills of the monthly Standardized Precipitation Index for the four regional time series studied. Our study used ANN models by optimizing hidden neurons, activation functions, and several combinations of training and testing algorithms. Although our research is focused on the study of SPI-12, it is possible to use the entire framework to study SPI at different time scales. In the context of climate change, drought forecast by using ANN models as a framework in future studies would be beneficial to generate useful information for decision making. In addition, future works should evaluate a variety of input parameters besides the SPI observed values to assess the effects of different network architectures.

REFERENCES

