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ABSTRACT
Bee (Apis mellifera L) honey is one of the oldest foods that humans have used. Since ancient
times, it has been used as a healthy product due to its sweetening and healing properties. In
2020, Mexico produced 54 121 tons (Mg), which ranked the country as the tenth largest producer
in the world. The hypothesis was that current honey prices can be explained by previous prices
and that they influence the increase in the population of hives and the production of honey in
Mexico. To test this hypothesis, the objective of this research was to develop a forecast model
for the annual average prices of honey in Mexico (AAPH). The data comprised the 1966 to
2019 prices and the Box-Jenkins methodology of Autoregressive Integrated Moving Average
(ARIMA), with and without intervention, was used. The parameters of the models were
estimated with the maximum likelihood method of the SAS® software, while the structural
change was calculated with the corresponding library (strucchange) of the R software. A model
based on the AAPH series was adapted for the 1966-2019 period and validated with data
from 2018 and 2019. The series presents five periods of trend structural changes of AAPH:
1966-1985; 1986-1995; 1996-2003; 2004-2008; and 2009-2019. The best estimated model without
intervention was ARIMA (1, 1, 1) and the best model with intervention was ARIMA (1, 1, 0),
which indicates that the prices of previous years can explain the AAPH. The predictions had
a mean absolute percentage error (MAPE) of 8.16 % for the model without intervention and
4.02 % for the model with intervention. Both estimated models suggested that the AAPH have
an upward trend in the medium term. The ARIMA model with intervention provided a more
accurate estimation of the AAPH and information to plan and make decisions for the next five

years.

Keywords: ARIMA models, intervention models, beekeeping, livestock planning, predictions.

INTRODUCTION
Beekeeping in Mexico, as a generator of foreign currency, ranks among the top three
activities in the livestock sector. The economic income of this activity mainly benefits
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small producers (Dolores et al., 2017). The main product of this activity is honey, which
is one of the oldest foods that humans have used to nourish. Additionally, it has been
used since ancient times as a beneficial health product, due to its well-known healing
properties (Ramos and Pacheco, 2016).

The domestic production of bee (Apis mellifera L) honey decreased from 55 687 Mg
in 2010 to 54 121 Mg in 2020; an average annual growth rate (AAGR) of -0.31 % was
recorded (SIAP, 2019). The decrease is associated with climate change, deforestation,
and the use of herbicides and insecticides in agricultural plots. Large drought periods,
erratic rainfall, and the lack of organization among producers contribute greatly to the
downward trend (Magana et al., 2016).

In 2020, the world production of natural honey was 1724 195 Mg. Mexico (54 121 Mg),
China (447 007 Mg), Turkey (109 330 Mg), and Canada (80 345 Mg) accounted for 3.60,
25.9, 6.3, and 4.6 % respectively of the total production (FAO, 2020). Mexico was the
tenth world producer.

China is the first world producer of honey, as a result of the drastic increase in the
population of hives, which are used for honey production. However, they also
pollinate cotton, rapeseed, buckwheat, apples, citrus, sunflower, vetches, and other
crops, whose production volumes significantly increased in the 2000-2011 period.
Beekeeping in China has been developed to the point that the country is now the
largest exporter in the world, as a result of the low prices it offers (Martinez and Pérez,
2013). However, consumers from importing countries report that Chinese honey lacks
safety and traceability (Maté, 2012).

Honey production in Mexico depends on several factors, including floral
characteristics, soil, and climate. The Coordinacién General de Ganaderia of the
Secretaria de Agricultura y Desarrollo Rural (SADER) classifies beekeeping activity
into five production regions: North, Pacific Coast, Gulf of Mexico, Altiplano, and
Yucatan Peninsula (Martinez and Pérez, 2013). From highest to lowest, the honey
production (2020) in these regions was divided as follows: Pacific Coast (39.10 %),
Yucatan Peninsula (24.09 %), Altiplano (15.67 %), Gulf of Mexico (10.64 %), and
North (10.50 %). There are still vast areas of the country where beekeeping can be
promoted; however, Jalisco, Chiapas, Veracruz, and Oaxaca contributed 11.20, 10.04,
8.58, and 8.38 % of the domestic production, respectively (SIAP, 2020).

In 2018, the average volume of honey exports from Mexico was 55 674 Mg, ranking
the country as the fourth largest exporter. Mexico is the main supplier of Germany,
the largest importer in the world, which applies the highest quality standards (SIAP,
2019). The main destinations of Mexican exports were Germany, United Kingdom,
USA, and Saudi Arabia, which together accounted for 90 % (FAO, 2020).

The variability of honey price in Mexico is the consequence of biological and climatic
factors (Caro et al., 2012). Nevertheless, it mainly depends on the Chinese production;
therefore, determining the behaviour of this variability and how it influences
Mexican prices is fundamental. Autoregressive Integrated Moving Average (ARIMA)
models are more appropriate for short-term predictions; they are designed to obtain



Agrociencia 2022. DOI: https://doi.org/10.47163/agrociencia.v56i3.2807
Scientific article

information about processes that have a certain degree of homogeneity. That is to say,
their analysis is based on a stationary series and at least 50 data are needed to achieve
a reliable prediction (Box ef al., 2015).

Prior knowledge of the time series to be studied is important, since the presence of
outliers can produce serious distortions in the results (Segura and Torres, 2014). It is
also very likely that they cannot be explained by the ARIMA model and, therefore,
violate the assumption of normality. Hence, outliers and structural changes influence
the efficiency and goodness of fit of the best proposed ARIMA models.

Economic theory indicates that, in perfect competition, a higher price leads to an
increase in supply, while a lower price induces a decrease (Varian, 2010). In the case
of honey, the quantity supplied in recent years has not changed (perfectly inelastic
supply). Meanwhile, the demand shift, based on the tastes and preferences of the
consumer, causes the price to increase. The hypothesis is that honey prices can be
explained by prior prices, which influence the increase in the population of hives and
the production of honey in Mexico. Under this hypothesis, the objective of this research
was to develop time series models from 1966 to 2019, with and without intervention,
in order to forecast the average prices of honey (AAPH) in Mexico and to evaluate the
functionality of the models.

MATERIALS AND METHODS

In order to determine the behaviour of the average prices paid to the producer of
bee (Apis mellifera L.) honey in Mexico (AAPH) and to develop forecasts, an annual
historical series of prices, expressed in Mexican pesos (MXN $ kg'), was used,
consulting the Sistema de Informacion Agroalimentaria y Pesquera (SIAP, 2020) and
the Food and Agriculture Organization of the United Nations (FAO, 2020). The AAPH
time series was divided into two parts: data from 1966 to 2019 were used to develop
the time series models, with and without intervention; and price data from 2018 and
2019 were used to validate the models.

Assumingthat Y’ =(Y,Y,, ..., Y )isatimeseries, apure ARIMA model is mathematically
denoted as (p, d, q) and is expressed as follows:

6 (B)

W:M+¢(B)a,

where: t = indexes time; W, = is the response series Y, or a difference of the response
series; u = is the mean term; B = is the backshift operator, that is (B'Y, =Y, ); ¢(B) is the
autoregressive polynomial (AR) of order “p”, developed as follows: ¢(B) = 1- ¢ B-¢,
B*-...- ¢,B; 0(B)=is the polynomial f moving averages (MA) of order “q”, where: 6(B) =
1-0 B-0,B*- ... GqB‘i,‘ a, =refers to random error terms (also called white noise), random
variables independently distributed in an identical way, sampled from a distribution
with preferably mean equal to zero and variance ¢, ~ N(0, 6%) (Box et al., 2015).
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The inclusion of the effects of exogenous variables (intervention variables) in the
general ARIMA model is achieved through the following transfer function:

s 0B ey, OB
W_,u Z’é,(B) B"X.. ¢(B)at

where: X, is the i-th input time series or a difference of the series of i-th input at
time t; k is the pure time lag for the effect of the i-th input series; w, (B) is the
numerator polynomial of the transfer function for the i-th input series; and 9, (B) is
the denominator polynomial of the transfer function for the i-th input series. In the
intervention analysis, some of the X, variables are assumed to be binary variables that
play the same role as the dummy variables in the regressions; therefore, the X series
are known as intervention indicators or outliers (Ferruz ef al. 2011).

If the intervention is recurrent in some type of event at a certain moment in time, it can
manifest itself in a later time, and temporarily or permanently affect the series under
study.

For the analysis and treatment, PROC ARIMA of SAS® software, version 9.4, was used
(SAS Institute Inc., 2014). The ARIMA model of the AAPH series for the 1966-2019
period was estimated using the methodology proposed by Box et al. (2015), which
consists of the construction and adjustment of the forecast model. Meanwhile, the
R program, version 3.6.2 (R Core Team, 2019) was used to determine the structural
change of level, with the corresponding library (strucchange) developed by Zeileis et
al. (2019).

The choice of the best model with and without intervention was parsimoniously
suggested by Rodriguez et al. (2017), through the Akaike Information Criterion (AIC)
and the Schwarz Bayesian Criterion (SBC) that compare the goodness of fit of the
different models. Both criteria are based on the use of the sum of squared errors and
seek to minimize it, based on various combinations of p and 4. Lower AIC and SBC
values indicate a better fit to the model. The aim of the graphical analysis was to
identify the best model in which, in addition to reducing the mean squared error, the
residuals were randomly distributed around zero without showing any pattern or
trend. This is an indicator that the data are random and have a normal distribution
(Moffat and Akpan, 2019).

RESULTS AND DISCUSSION

The AAPH series data fluctuated over time, following an upward trend. The results of
the structural change analysis showed that the trend of the series presents structural
changes and that these had an impact on the evolution over time of the data generation
process. A trend break of the AAPH occurred in five periods. The first (1966-1985) was
characterized by the existence of tariffs on food imports. During this period, prices
presented a 19.27 % AAGR. Tariffs protected domestic production from international
competition and they were the basis of the food supply for the population (CEDRSSA,
2018).
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From 1986 to 1995, Mexican beekeeping suffered a major setback due to the entry of the
African bee (Apis mellifera scutellata) through the states of Chiapas and Quintana Roo.
In 1986, the Africanization process began to affect honey production in the states of
Yucatan and Campeche. African bees are characterized by their defensive behaviour,
their tendency to take flight, and their high capacity to build swarms or hives. Their
beekeeping requires a more technical management and their exploitation demands a
greater investment (Cervantes et al., 2018).

In 1988, hurricane Gilberto caused a considerable loss of hives and wild swarms in
the Yucatan Peninsula, reducing honey production. This generated a constant rise in
prices (AAGR: 17.66 %) during the 1986-1995 period.

During the 1996-2003 period, the Africanization of hives resulted in a decrease in
production in Mexico, South America, and the southern United States. Meanwhile,
the appearance in the Gulf of Mexico (and subsequent dispersion) of the varroa mite
(Varroa jacobsoni Oudemans), which parasitizes Apis mellifera bees (Medina ef al., 2014),
generated a fall in honey production and, consequently, an increase in honey prices
toa 6.02 % AAGR.

From 2004 to 2008, there was a decrease in honey production, as a result of hurricanes
Wilma and Dean, which mainly affected southeastern Mexico and the Yucatan
Peninsula (the most important production regions), causing a partial or total loss
of hives. Other problems were the lack of water in other production regions, bee
health, reduction of wild areas due to urbanization, and the use of pesticides and
agrochemicals that affect bees (Martinez and Pérez, 2013). Consequently, prices fell to
a—-0.33 % AAGR.

In the 2009-2019 period, prices increased to a 4.31 % AAGR, largely as a result of the
awareness of society about the preservation of bees and pollinating species. The most
lucrative and attractive market for Mexico is the European Union, which demands
organic and transgenic-free honey produced without pollutants; consequently, Mexi-
can honey has positioned itself as a highly appreciated product and the price trend is
upward in the medium term (Figure 1).

The Cox-Box test produced a 1-0.5, so the AAPH series was transformed into natural
logarithms to keep the variance constant (Vélez et al., 2015); now the series was
renamed AAPHL. Series Y, Y,, ..., Y, show that there is still a certain trend in time
(Figure 2), but, through the first difference (V) —i.e., (1-B) AAPHL,— a stationary
series is obtained. Therefore, d = 1.

The AAPH series, differentiated and transformed into natural logarithms, was renamed
AAPHL (1); it is intuitively known a priori that the series already has a stationary
mean (there is no trend) and variance. However, outliers were recorded in 1979, 1981,
1985, and 1991. Therefore, working the series with two methods (with and without
intervention) was necessary. Box et al. (2015) pointed out that, in order to obtain better
forecasts, the series to be studied must have a constant variability throughout time
and must not have a trend (Figure 3).
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Figure 1. Original behaviour of the AAPH series (in MXN $ kg') and its structural changes (1966 —
2019).
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Figure 2. Behaviour of the AAPH series transformed into natural logarithms (AAPHL).
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Figura 3. Differentiated AAPHL series, transformed with natural logarithms and with no apparent
trend.
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To statistically verify the stationarity or non-stationarity of the time series, the
Augmented Dickey-Fuller unit root test (ADF) was carried out (Dickey and Fuller,
1981). This test includes lags from the first Y, difference in the test regression, in order
to include the possible existence of serial autocorrelation. Therefore, the following
hypothesis is proposed: Ho, the series is not stationary (p = 1) and has a unit root vs.
Ha, the series is stationary (p # 1) and does not have a unit root. Decision rule: Ho is
rejected if p-value < a = 0.05. Since the p-value of the calculated F (0.001) is lower than
a = 0.05, the null hypothesis is rejected H: 60 (p = 1), reaching the conclusion that
AAPHL(1) series does not have a unit root; therefore, it is stationary. Consequently, it
have a constant variance and mean over time (Table 1).

For the AAPHL(1) time series, a model was fitted using the PROC ARIMA process
(SAS Institute Inc., 2014); the AR1,1 (¢,) and the moving average component MA1,1
(0,) parameters were calculated using maximum likelihood. Because this method
assumes that its estimators are asymptotically optimal, when the size of the series
is large, they are considered to be centered or unbiased, and efficient, and that their
distribution is normal (Montemayor, 2013).

Out of the 15 proposed models, the one that best meets the significance of parameters
and white noise was identified. The AR and MA coefficients were chosen because
the ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function)
simultaneously present coefficients other than zero. Likewise, they were estimated
considering different choices of p and g, as well as the values of SBC, AIC, and the
variance 0 ? for the four best ARIMA models fitted to the AAPHL(1) series.

The first difference is often enough (d = 1); therefore, it was established in all models.
The model with the lowest SBC and AIC value for this data set was ARIMA (1, 1, 1)
(Table 2).

The ARIMA (1, 1, 1) model is considered the best moderate model without intervention,
since, according to Box et al. (2015), the absolute t statistic must be higher than 2
and the p-values of the parameters must be lower than 0.05. Not only is this model
parsimonious, it sufficiently fits the old data (Table 3).

For the calculation, the equation of the ARIMA (1, 1, 1) model must be supported
by the coefficients in Table 3 (without including the outliers) and by the theoretical

Table 1. Augmented Dickey-Fuller test (ADF) for the differentiated series of logarithms of
annual average prices of honey in Mexico (AAPHL(1)).

Kind Lags Rho Pr <Rho Tau Pr < Tau F Pr>F
0 -25.8205 <.0001 -4.12 <.0001
Zero mean 1 -14.5181 0.0058 -2.64 0.0092
2 -11.4307 0.0153 -2.2 0.0283
. 0 -32.2686 0.0005 -4.74 0.0003 11.22 0.001
Isrlllel;%le 1 -21.1904 0.0042 -3.16 0.0282 4.99 0.0418
2 -18.8792 0.0087 -2.71 0.0792 3.67 0.1653
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Table 2. Values of AR, MA, SBC, and AIC of the identified ARIMA models (p, 1, q) and
estimators for & e

Best Lags Coefficients
ARIMA' SBC? AICH 0
models AR MA ARL11(p) MA1,157g) <
1.-(1,1,0) 1 0.49727 - 23.75236  21.78207  0.293619
2-(1,1,1) 1 1 0.82419 0.46266  23.67558 19.73499  0.285018
3-(2,1,1) 2 1 0.37660 -0.36982 2532337 21.38279  0.289676
4-(1,1,2) 1 2 0.42923 -0.15275  26.26991 22.32933  0.292387

fARIMA: Autoregressive Integrated Moving Average process, TAR: Autoregressive
coefficient of order (p), SMA: Moving average coefficient of order (g), P SBC: Schwarz
Bayesian Criterion, AIC: Akaike Information Criterion. o e Standard error of estimate.

Table 3. Model estimation for the AAPHL(1) time series by maximum
likelihood without intervention.

Parameter Estimation Standard t-value Aprox Lag
error Pr> Itl
MAL1 0.46266 0.21077 2.20 0.0282 1
AR1,1 0.82419 0.13183 6.25 <0.0001 1

approach established by Box et al. (2015). The following equation was obtained when
the model was developed:

ARIMA (1,1,1)=(1-¢B) (1-B)) Y,=(1-6,B)
ARIMA (L11) =Y, =Y, +¢, Y -0, Y,-0,a, +q,
ARIMA (1,1,1)=Y,=Y,, +0.82419 Y, - 0.82419 Y, - 0.46266 «, , + ¢,

The ARIMA (1, 1, 1) model with intervention

Because the study series included level shift (LS) outliers in 1979, 1981, 1985, and
1991, these data were included into the the original ARIMA (1, 1, 1) model in order
to improve it. To respect the assumption of parsimony and the significant statistical
value of the parameters, this new model is known as the model with intervention (Box
et al., 2015). The results showed that the moving average coefficient was not significant;
consequently,the ARIMA (1, 1, 0) model with intervention was chosen. In addition to a
significant coefficient, there was a significant decrease in the standard error (51.38 %),
compared to the ARIMA (1, 1, 1) model without intervention (Table 4).

The ARIMA (1, 1, 0) model was considered the best moderate model with
intervention, since —in addition to meeting the assumptions made by the Box-Jenkins
methodology — it includes outlier data (Table 5).



Agrociencia 2022. DOI: https://doi.org/10.47163/agrociencia.v56i3.2807
Scientific article

Table 4. AR, MA, SBC, and AIC values of the identified ARIMA models with intervention (p, 1, q) and
estimators for J_.

Best Lags Coefficients
ARIMA' SBC AIC o,
models AR MA  ARLIT(p) MALIS(g)
1-(1,1,1) *a 1 1 0.82419 0.46266 23.67558 19.73499  0.285018
2-(1,1, D) ' 1 1 0.88111 0.25647 -38.3316 -52.1237 0.137813
3.-(1,1,0)*c 1 0 0.79943 - -40.6168 -52.4386 0.138568

fARIMA: Autoregressive Integrated Moving Average Process, fa ARIMA (1, 1, 1) model without
intervention, 'b ARIMA (1, 1, 1) model with intervention, *c ARIMA (1, 1, 0) model with intervention
TAR: Autoregressive coefficient of order (p), SMA: Moving average coefficient of order (g), "SBC:
Schwarz Bayesian Criterion, *AIC: Akaike Information Criterion. _: Standard error of estimate.

Table 5. Model estimation for the AAPHL(1) time series by maximum likelihood with intervention.

Parameter Estimator Standard Value of ¢ Aprox. Lag Variable Displacement
error Pr> [t
ARL1 0.79943 0.08486 9.42 <.0001 1 AAPHLog 0
NUM1 -0.68236 0.10721 -6.36 <.0001 0 LS_15 0
NUM2 0.51015 0.10722 4.76 <.0001 0 LS_17 0
NUM3 1.11607 0.10796 10.34 <.0001 0 LS 21 0
NUM4 -0.58917 0.10724 -5.49 <.0001 0 LS 27 0
NUM5 0.42211 0.10733 3.93 <.0001 0 LS 31 0

The equation of the ARIMA (1, 1, 0) model with intervention is expressed as:
(1-0.79943B,)

a,

Y, = -0.68236, + 0.51015&,, + 1.11607&,, - 0.58917¢, +0.42211¢,, +

§,=1sit =15 or other wise
§,=1sit =17 or other wise
&, =1sit =21 or other wise
§,=1sit =27 or other wise
&, =1sit = 31 or other wise

To verify the overall sufficiency of the Box-Jenkins model, the residuals obtained from
the models without and with intervention were analysed. The Ljung-Box Q" (LBQ)
statistic and its associated p-value proved the H: ¢, ~ RB (0, 0) null hypothesis. The
autocorrelations up to a lag k are equal to zero for k values equal to 6, 12, 18, 24, and 30.
The random and independent data values —up to a certain number of lags— vs. the
H : ¢,are not white noise. Abdulhafedh (2017) suggest that, if the Ljung-Box Q (LBQ)
statistic is higher than a specified critical value, the autocorrelations for one or more
lags could be significantly different from zero, indicating that the values are neither
random nor independent in time.
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The decision rule is the following: if the p-value < 0.05, H, is rejected, but if the p-value
>0.05, H, is not rejected. The first 6 k" have p-values > 0.05; therefore, H;: p, =p,=p, =
p,=ps=p, isnot rejected. An @=0.05 value means that the process is purely random or
white noise —this is, the residuals have a mean equal to zero. Therefore, a 6> = 0.01668
constant variance means that there is no longer information about the dependence of
some data on others over time (Table 6).

After estimating the parameters of both models, they were validated by residual
analysis (Yafee and McGee, 2000). The estimated standardized residuals of these
models should behave as an independent and identically distributed sequence, with
a mean equal to zero and constant variance. However, the residuals of the model
without intervention still present outliers in the + 0.5 band, a sign that this model
is being affected by outliers (Figure 4A). When the intervention is included in the
model, the residuals oscillate by +0.2, substantially improving the mean and constant
variance (Figure 4B). The distribution of residuals without intervention approximates
a normal slightly left-skewed leptokurtic distribution (Figure 4C). The model with
intervention approximates a normal distribution, which indicates a great affinity of
the data, regardless of their magnitude (Figure 4D).

The ACEF of the residuals of the ARIMA (1, 1, 1) model showed data that fell outside the
confidence band, a sign that there is still data dependency that can be modeled (Figure
5A). The ACF of the residuals of the ARIMA (1, 1, 0) model with intervention shows
that the autocorrelations fall within the confidence band (this is, they are close to zero).
Consequently, the residuals did not show a significant deviation from a process of
zero white noise and are random. Therefore, there is no longer information about the
dependence of some data on others over time (Figure 5B).

The models estimated with and without intervention were used to make out-of-
sample predictions for the seven years following the last observation and to predict
the montly AAPH values for the years 1967 to 2019 with great accuracy regarding the
observed values; these values are located within the confidence band (+ 95 % estimate).
According to the model estimation, the average prices of honey in Mexico paid to the
producer in the medium term will have an upward behaviour and an average annual
growth rate (AAGR) of 1.33 %. The AAPHs will range from MXN §$ 46.69 to MXN §$

Table 6. Verification of autocorrelation of white noise in the residuals of the AAPHL(1) series with

intervention.

To Chi- Pr> .
lag squared ChiSq Autocorrelations

6 7.65 6 0.2652 -0.195 0.082  -0.165 0.036  -0.115 0.207
12 9.81 12 0.6326 -0.116 0.036  0.075 -0.086  -0.029 -0.065
18 17.97 18 0.4576 -0.001 -0.015  0.250 -0.080  -0.064 -0.174
24 24.51 24 0.4326 0.039 -0.120  0.232 -0.037  -0.030 -0.009
30 30.07 30 0.4623 -0.036 -0.100  0.022 0.065  -0.071 0.159




Agrociencia 2022. DOI: https://doi.org/10.47163/agrociencia.v56i3.2807

Scientific article

1.0+

-0.5
T T T T T
0 10 20 a0 40 &0
Observation
B0 C Marrmal
Kernel
B0 | [ 1
i
g
g 40 -
i
o
20
)
2
[] —
T T T T T T T T T
08 0B 03 0O 03 D6 D08 12 15

Residual

Eesidual

Percentage

04 -

o
%]
|

o
[]
|

-0.2 -

40 -

ad
(=]
|

]
=]
|

10—

11

T T T T T T
0 10 20 30 40 &0
Observation
D Mearmal
Kernel

S/

Ny

T
-03

T T T T T T T
-018 006 006 018 03 042 054

Residual

Figure 4. Graphical diagnostics used to evaluate the fit of the ARIMA (1, 1, 1) and ARIMA (1, 1, 0) models, based on the
standardized residuals. A: Residuals of the model without intervention; B: Residuals of the model with intervention; C:
Distribution of residuals without intervention; D: Distribution of residuals with intervention.

49.25 according to the ARIMA model without intervention. With the ARIMA model
that includes the outliers, the AAPHSs will fluctuate between MXN $ 47.49 and MXN
$ 50.15. These results match the findings of Ramos and Pacheco (2016), who pointed
out that the beekeeping sector is increasingly specialized and constantly improves the

product, adding and diversifing value and, therefore, obtaining better international

prices for honey. However, this implies greater incentives to marketers-exporters. In

contrast, although the prices paid to producers have increased in recent years, they

have not increased in the same proportion (Figure 6).
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Figure 5. Graphical diagnostics used to evaluate the fit of the ARIMA (1, 1, 1) and ARIMA (1, 1, 0) models, based on the
ACEF of the residuals. A: Without intervention; B: With intervention.
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Figure 6. Average honey prices (observed and forecasted) paid to producers in Mexico, 2019
(MXN $ kg*). They were obtained through the ARIMA (1, 1, 1) and ARIMA (1, 1, 0) models with
intervention, based on information provided by SIAP (2020) and FAO (2020).

With the ARIMA models without and with intervention, the AAPHs were forecasted
for the 1967-2019 period and these prices were compared with those of the AAPH
series. The predictions had a mean absolute percentage error (MAPE) of 8.16 % for the
model without intervention and 4.02 % for the model with intervention. This indicates
that the second model, which included the outliers with special treatment that improve
the statistical fit of the studied time series, improved the predictions of honey prices.
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Compared to the ARIMA methodology, some research about vanilla production
prediction in Mexico provided models with a 91.68 % forecast accuracy; Luis-Rojas
et al. (2020), for example, reported an ARIMA (1, 1, 1) structure similar to the one
proposed here.

Other production and price prediction models, which contemplate both ARIMA and
SARIMA structures, are used to forecast white egg prices to Mexican producers, as
well as the prices of vanilla and pork. Barreras-Serrano et al. (2014) and Luis-Rojas
et al. (2019) point out that this methodology is only useful to establish short-term
forecasts, suggesting that a greater accuracy could be achieved through the inclusion
of exogenous variables through transfer function models; they also propose the use of
multivariate models for long term forecasts.

Ruiz et al. (2019) used a SARIMA (2, 1, 0) X (1, 1, 0)_,, model to make a 12-month
forecast of the apple price, concluding that future apple prices show an upward trend.
However, the authors suggest considering the limitation of the prediction, since the
economic dynamics of prices will always be complex. Nevertheless, prediction can be
a useful tool for decision-making.

Finally, the estimation of a unique and universally accepted model to understand the
future prices of bee honey in Mexico is unrealistic and perhaps unnecessary since
the international market demands honey from different blooming fields and regions.
Therefore, the statistical agencies should provide increasingly specific information.
However, this ARIMA (1, 1, 0) model with intervention explains, to a large extent, the
panorama of the prices paid to honey producers in Mexico. In coincidence with the
structure of the studied series, it can be understood and analysed, because it is well
specified.

CONCLUSIONS
The series presents five structural changes with a trend break of the AAPHs (1966-1985,
1986-1995, 1996-2003, 20042008, and 2009-2019), explained by the protection of the
domestic market, the Africanization of hives, the presence of varroa, extreme climatic
factors (hurricanes, droughts, etc.), and the appreciation of pollutant-free, organic,
and transgenic-free honey in the foreign market.
The inclusion of outliers in the ARIMA model, which reduced the variance from
0.08123 to 0.01920, resulted in a better prediction of the AAPH than the univariate
ARIMA model without intervention.
The short-term predictions of the study series showed an 8.16 % and 4.02 % difference
from the data observed with the ARIMA model without intervention and with
intervention, respectively; in both cases the random error was minimized. The two
models proposed explain the AAPH in Mexico, based on the AAPH from a previous
period, which showed an upward trend in the medium term. Therefore, the demand
displacement, based on the tastes and preferences of the consumer, explains the
increase in prices, although the supply increase has not been a major factor, because
the quantity produced has practically been very similar in the last 20 years.
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