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ABSTRACT
Bee (Apis mellifera L) honey is one of the oldest foods that humans have used. Since ancient 
times, it has been used as a healthy product due to its sweetening and healing properties. In 
2020, Mexico produced 54 121 tons (Mg), which ranked the country as the tenth largest producer 
in the world. The hypothesis was that current honey prices can be explained by previous prices 
and that they influence the increase in the population of hives and the production of honey in 
Mexico. To test this hypothesis, the objective of this research was to develop a forecast model 
for the annual average prices of honey in Mexico (AAPH). The data comprised the 1966 to 
2019 prices and the Box-Jenkins methodology of Autoregressive Integrated Moving Average 
(ARIMA), with and without intervention, was used. The parameters of the models were 
estimated with the maximum likelihood method of the SAS® software, while the structural 
change was calculated with the corresponding library (strucchange) of the R software. A model 
based on the AAPH series was adapted for the 1966−2019 period and validated with data 
from 2018 and 2019. The series presents five periods of trend structural changes of AAPH: 
1966−1985; 1986−1995; 1996−2003; 2004−2008; and 2009−2019. The best estimated model without 
intervention was ARIMA (1, 1, 1) and the best model with intervention was ARIMA (1, 1, 0), 
which indicates that the prices of previous years can explain the AAPH. The predictions had 
a mean absolute percentage error (MAPE) of 8.16  % for the model without intervention and 
4.02  % for the model with intervention. Both estimated models suggested that the AAPH have 
an upward trend in the medium term. The ARIMA model with intervention provided a more 
accurate estimation of the AAPH and information to plan and make decisions for the next five 
years.
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INTRODUCTION
Beekeeping in Mexico, as a generator of foreign currency, ranks among the top three 
activities in the livestock sector. The economic income of this activity mainly benefits 
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small producers (Dolores et al., 2017). The main product of this activity is honey, which 
is one of the oldest foods that humans have used to nourish. Additionally, it has been 
used since ancient times as a beneficial health product, due to its well-known healing 
properties (Ramos and Pacheco, 2016).
The domestic production of bee (Apis mellifera L) honey decreased from 55 687 Mg 
in 2010 to 54 121 Mg in 2020; an average annual growth rate (AAGR) of −0.31  % was 
recorded (SIAP, 2019). The decrease is associated with climate change, deforestation, 
and the use of herbicides and insecticides in agricultural plots. Large drought periods, 
erratic rainfall, and the lack of organization among producers contribute greatly to the 
downward trend (Magaña et al., 2016).
In 2020, the world production of natural honey was 1 724 195 Mg. Mexico (54 121 Mg), 
China (447 007 Mg), Turkey (109 330 Mg), and Canada (80 345 Mg) accounted for 3.60, 
25.9, 6.3, and 4.6  % respectively of the total production (FAO, 2020). Mexico was the 
tenth world producer.
China is the first world producer of honey, as a result of the drastic increase in the 
population of hives, which are used for honey production. However, they also 
pollinate cotton, rapeseed, buckwheat, apples, citrus, sunflower, vetches, and other 
crops, whose production volumes significantly increased in the 2000−2011 period. 
Beekeeping in China has been developed to the point that the country is now the 
largest exporter in the world, as a result of the low prices it offers (Martínez and Pérez, 
2013). However, consumers from importing countries report that Chinese honey lacks 
safety and traceability (Maté, 2012).
Honey production in Mexico depends on several factors, including floral 
characteristics, soil, and climate. The Coordinación General de Ganadería of the 
Secretaría de Agricultura y Desarrollo Rural (SADER) classifies beekeeping activity 
into five production regions: North, Pacific Coast, Gulf of Mexico, Altiplano, and 
Yucatan Peninsula (Martínez and Pérez, 2013). From highest to lowest, the honey 
production (2020) in these regions was divided as follows: Pacific Coast (39.10  %), 
Yucatan Peninsula (24.09  %), Altiplano (15.67  %), Gulf of Mexico (10.64  %), and 
North (10.50  %). There are still vast areas of the country where beekeeping can be 
promoted; however, Jalisco, Chiapas, Veracruz, and Oaxaca contributed 11.20, 10.04, 
8.58, and 8.38  % of the domestic production, respectively (SIAP, 2020).
In 2018, the average volume of honey exports from Mexico was 55 674 Mg, ranking 
the country as the fourth largest exporter. Mexico is the main supplier of Germany, 
the largest importer in the world, which applies the highest quality standards (SIAP, 
2019). The main destinations of Mexican exports were Germany, United Kingdom, 
USA, and Saudi Arabia, which together accounted for 90  % (FAO, 2020).
The variability of honey price in Mexico is the consequence of biological and climatic 
factors (Caro et al., 2012). Nevertheless, it mainly depends on the Chinese production; 
therefore, determining the behaviour of this variability and how it influences 
Mexican prices is fundamental. Autoregressive Integrated Moving Average (ARIMA) 
models are more appropriate for short-term predictions; they are designed to obtain 
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information about processes that have a certain degree of homogeneity. That is to say, 
their analysis is based on a stationary series and at least 50 data are needed to achieve 
a reliable prediction (Box et al., 2015).
Prior knowledge of the time series to be studied is important, since the presence of 
outliers can produce serious distortions in the results (Segura and Torres, 2014). It is 
also very likely that they cannot be explained by the ARIMA model and, therefore, 
violate the assumption of normality. Hence, outliers and structural changes influence 
the efficiency and goodness of fit of the best proposed ARIMA models.
Economic theory indicates that, in perfect competition, a higher price leads to an 
increase in supply, while a lower price induces a decrease (Varian, 2010). In the case 
of honey, the quantity supplied in recent years has not changed (perfectly inelastic 
supply). Meanwhile, the demand shift, based on the tastes and preferences of the 
consumer, causes the price to increase. The hypothesis is that honey prices can be 
explained by prior prices, which influence the increase in the population of hives and 
the production of honey in Mexico. Under this hypothesis, the objective of this research 
was to develop time series models from 1966 to 2019, with and without intervention, 
in order to forecast the average prices of honey (AAPH) in Mexico and to evaluate the 
functionality of the models.

MATERIALS AND METHODS
In order to determine the behaviour of the average prices paid to the producer of 
bee (Apis mellifera L.) honey in Mexico (AAPH) and to develop forecasts, an annual 
historical series of prices, expressed in Mexican pesos (MXN $ kg-1), was used, 
consulting the Sistema de Información Agroalimentaria y Pesquera (SIAP, 2020) and 
the Food and Agriculture Organization of the United Nations (FAO, 2020). The AAPH 
time series was divided into two parts: data from 1966 to 2019 were used to develop 
the time series models, with and without intervention; and price data from 2018 and 
2019 were used to validate the models.
Assuming that Y ’ = (Y1, Y2, ..., Yn) is a time series, a pure ARIMA model is mathematically 
denoted as (p, d, q) and is expressed as follows:

Wt =  +
 (B)
 (B)  t

where: t = indexes time; Wt = is the response series Yt or a difference of the response 
series; m = is the mean term; B = is the backshift operator, that is (BrYt = Yt-r); f(B) is the 
autoregressive polynomial (AR) of order “p”, developed as follows: f(B)  =  1 -  f1B - f2 

B2 - ...- fpBp; q(B) = is the polynomial f moving averages (MA) of order “q”, where: q(B) = 
1-q

1
B - q

2
B2 - ... qqBq; at = refers to random error terms (also called white noise), random 

variables independently distributed in an identical way, sampled from a distribution 
with preferably mean equal to zero and variance at ~ N(0, d2) (Box et al., 2015).
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The inclusion of the effects of exogenous variables (intervention variables) in the 
general ARIMA model is achieved through the following transfer function:

Wt =  +
 i (B)
i (B)

i
/ Bki Xi,t +  (B)

 (B)  t

where: Xi,t is the i-th input time series or a difference of the series of i-th input at 
time t; ki is the pure time lag for the effect of the i-th input series; wi (B) is the 
numerator polynomial of the transfer function for the i-th input series; and di (B) is 
the denominator polynomial of the transfer function for the i-th input series. In the 
intervention analysis, some of the Xi,t variables are assumed to be binary variables that 
play the same role as the dummy variables in the regressions; therefore, the Xi,t series 
are known as intervention indicators or outliers (Ferruz et al. 2011).

If the intervention is recurrent in some type of event at a certain moment in time, it can 
manifest itself in a later time, and temporarily or permanently affect the series under 
study.
For the analysis and treatment, PROC ARIMA of SAS® software, version 9.4, was used 
(SAS Institute Inc., 2014). The ARIMA model of the AAPH series for the 1966−2019 
period was estimated using the methodology proposed by Box et al. (2015), which 
consists of the construction and adjustment of the forecast model. Meanwhile, the 
R program, version 3.6.2 (R Core Team, 2019) was used to determine the structural 
change of level, with the corresponding library (strucchange) developed by Zeileis et 
al. (2019).
The choice of the best model with and without intervention was parsimoniously 
suggested by Rodríguez et al. (2017), through the Akaike Information Criterion (AIC) 
and the Schwarz Bayesian Criterion (SBC) that compare the goodness of fit of the 
different models. Both criteria are based on the use of the sum of squared errors and 
seek to minimize it, based on various combinations of p and q. Lower AIC and SBC 
values indicate a better fit to the model. The aim of the graphical analysis was to 
identify the best model in which, in addition to reducing the mean squared error, the 
residuals were randomly distributed around zero without showing any pattern or 
trend. This is an indicator that the data are random and have a normal distribution 
(Moffat and Akpan, 2019).

RESULTS AND DISCUSSION
The AAPH series data fluctuated over time, following an upward trend. The results of 
the structural change analysis showed that the trend of the series presents structural 
changes and that these had an impact on the evolution over time of the data generation 
process. A trend break of the AAPH occurred in five periods. The first (1966−1985) was 
characterized by the existence of tariffs on food imports. During this period, prices 
presented a 19.27  % AAGR. Tariffs protected domestic production from international 
competition and they were the basis of the food supply for the population (CEDRSSA, 
2018).
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From 1986 to 1995, Mexican beekeeping suffered a major setback due to the entry of the 
African bee (Apis mellifera scutellata) through the states of Chiapas and Quintana Roo. 
In 1986, the Africanization process began to affect honey production in the states of 
Yucatan and Campeche. African bees are characterized by their defensive behaviour, 
their tendency to take flight, and their high capacity to build swarms or hives. Their 
beekeeping requires a more technical management and their exploitation demands a 
greater investment (Cervantes et al., 2018).
In 1988, hurricane Gilberto caused a considerable loss of hives and wild swarms in 
the Yucatan Peninsula, reducing honey production. This generated a constant rise in 
prices (AAGR: 17.66  %) during the 1986−1995 period.
During the 1996-2003 period, the Africanization of hives resulted in a decrease in 
production in Mexico, South America, and the southern United States. Meanwhile, 
the appearance in the Gulf of Mexico (and subsequent dispersion) of the varroa mite 
(Varroa jacobsoni Oudemans), which parasitizes Apis mellifera bees (Medina et al., 2014), 
generated a fall in honey production and, consequently, an increase in honey prices 
to a 6.02 % AAGR.
From 2004 to 2008, there was a decrease in honey production, as a result of hurricanes 
Wilma and Dean, which mainly affected southeastern Mexico and the Yucatan 
Peninsula (the most important production regions), causing a partial or total loss 
of hives. Other problems were the lack of water in other production regions, bee 
health, reduction of wild areas due to urbanization, and the use of pesticides and 
agrochemicals that affect bees (Martínez and Pérez, 2013). Consequently, prices fell to 
a −0.33 % AAGR.
In the 2009−2019 period, prices increased to a 4.31 % AAGR, largely as a result of the 
awareness of society about the preservation of bees and pollinating species. The most 
lucrative and attractive market for Mexico is the European Union, which demands 
organic and transgenic-free honey produced without pollutants; consequently, Mexi-
can honey has positioned itself as a highly appreciated product and the price trend is 
upward in the medium term (Figure 1).
The Cox-Box test produced a l-0.5, so the AAPH series was transformed into natural 
logarithms to keep the variance constant (Vélez et al., 2015); now the series was 
renamed AAPHL. Series Y1, Y2, ..., Yn show that there is still a certain trend in time 
(Figure 2), but, through the first difference (Ñ) —i.e., (1-B) AAPHLt— a stationary 
series is obtained. Therefore, d = 1.
The AAPH series, differentiated and transformed into natural logarithms, was renamed 
AAPHL (1); it is intuitively known a priori that the series already has a stationary 
mean (there is no trend) and variance. However, outliers were recorded in 1979, 1981, 
1985, and 1991. Therefore, working the series with two methods (with and without 
intervention) was necessary. Box et al. (2015) pointed out that, in order to obtain better 
forecasts, the series to be studied must have a constant variability throughout time 
and must not have a trend (Figure 3).
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Figura 3. Differentiated AAPHL series, transformed with natural logarithms and with no apparent 
trend.

Figure 1. Original behaviour of the AAPH series (in MXN $ kg-1) and its structural changes (1966 – 
2019).

Figure 2. Behaviour of the AAPH series transformed into natural logarithms (AAPHL).
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To statistically verify the stationarity or non-stationarity of the time series, the 
Augmented Dickey-Fuller unit root test (ADF) was carried out (Dickey and Fuller, 
1981). This test includes lags from the first Yt difference in the test regression, in order 
to include the possible existence of serial autocorrelation. Therefore, the following 
hypothesis is proposed: Ho, the series is not stationary (r = 1) and has a unit root vs. 
Ha, the series is stationary (r ≠ 1) and does not have a unit root. Decision rule: Ho is 
rejected if p-value ≤ a = 0.05. Since the p-value of the calculated F (0.001) is lower than 
a = 0.05, the null hypothesis is rejected H0: d0 (r = 1), reaching the conclusion that 
AAPHL(1) series does not have a unit root; therefore, it is stationary. Consequently, it 
have a constant variance and mean over time (Table 1).
For the AAPHL(1) time series, a model was fitted using the PROC ARIMA process 
(SAS Institute Inc., 2014); the AR1,1 (f1) and the moving average component MA1,1 
(q1) parameters were calculated using maximum likelihood. Because this method 
assumes that its estimators are asymptotically optimal, when the size of the series 
is large, they are considered to be centered or unbiased, and efficient, and that their 
distribution is normal (Montemayor, 2013).
Out of the 15 proposed models, the one that best meets the significance of parameters 
and white noise was identified. The AR and MA coefficients were chosen because 
the ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) 
simultaneously present coefficients other than zero. Likewise, they were estimated 
considering different choices of p and q, as well as the values of SBC, AIC, and the 
variance d

e
2  for the four best ARIMA models fitted to the AAPHL(1) series.

The first difference is often enough (d = 1); therefore, it was established in all models. 
The model with the lowest SBC and AIC value for this data set was ARIMA (1, 1, 1) 
(Table 2).
The ARIMA (1, 1, 1) model is considered the best moderate model without intervention, 
since, according to Box et al. (2015), the absolute t statistic must be higher than 2 
and the p-values of the parameters must be lower than 0.05. Not only is this model 
parsimonious, it sufficiently fits the old data (Table 3).
For the calculation, the equation of the ARIMA (1, 1, 1) model must be supported 
by the coefficients in Table 3 (without including the outliers) and by the theoretical 

Table 1. Augmented Dickey–Fuller test (ADF) for the differentiated series of logarithms of 
annual average prices of honey in Mexico (AAPHL(1)).

Kind Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero mean 
0 -25.8205 <.0001 -4.12 <.0001
1 -14.5181 0.0058 -2.64 0.0092
2 -11.4307 0.0153 -2.2 0.0283

Simple 
mean

0 -32.2686 0.0005 -4.74 0.0003 11.22 0.001
1 -21.1904 0.0042 -3.16 0.0282 4.99 0.0418
2 -18.8792 0.0087 -2.71 0.0792 3.67 0.1653
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approach established by Box et al. (2015). The following equation was obtained when 
the model was developed:

ARIMA (1,1,1) = (1 - f1B1) (1 - B1) Yt = (1 - q1 B1) at

ARIMA (1,1,1) = Yt = Yt-1 + f1 Yt-1 - f1 Yt-2 - q1 at-1 + at

ARIMA (1,1,1) = Yt = Yt-1 + 0.82419 Yt-1 - 0.82419 Yt-2 - 0.46266 at-1 + at

The ARIMA (1, 1, 1) model with intervention
Because the study series included level shift (LS) outliers in 1979, 1981, 1985, and 
1991, these data were included into the the original ARIMA (1, 1, 1) model in order 
to improve it. To respect the assumption of parsimony and the significant statistical 
value of the parameters, this new model is known as the model with intervention (Box 
et al., 2015). The results showed that the moving average coefficient was not significant; 
consequently,the ARIMA (1, 1, 0) model with intervention was chosen. In addition to a 
significant coefficient, there was a significant decrease in the standard error (51.38  %), 
compared to the ARIMA (1, 1, 1) model without intervention (Table 4).
The ARIMA (1, 1, 0) model was considered the best moderate model with 
intervention, since —in addition to meeting the assumptions made by the Box-Jenkins 
methodology— it includes outlier data (Table 5).

Table 2. Values of AR, MA, SBC, and AIC of the identified ARIMA models (p, 1, q) and 
estimators for d

Î
.

Best  
ARIMA† 

models

Lags Coefficients
SBCÞ AIC¤ d

ÎAR MA AR1,1¶ (p) MA1,1§(q)

1.- (1, 1, 0) 1 0.49727 - 23.75236 21.78207 0.293619
2.- (1, 1, 1) 1 1 0.82419 0.46266 23.67558 19.73499 0.285018
3.- (2, 1, 1) 2 1 0.37660 -0.36982 25.32337 21.38279 0.289676
4.- (1, 1, 2) 1 2 0.42923 -0.15275 26.26991 22.32933 0.292387

†ARIMA: Autoregressive Integrated Moving Average process, ¶AR: Autoregressive 
coefficient of order (p), §MA: Moving average coefficient of order (q), Þ SBC: Schwarz 
Bayesian Criterion, AIC: Akaike Information Criterion. d

Î
: Standard error of estimate.

Table 3. Model estimation for the AAPHL(1) time series by maximum 
likelihood without intervention.

Parameter Estimation Standard
error t-value Aprox 

Pr > |t| Lag

MA1,1 0.46266 0.21077 2.20   0.0282 1
AR1,1 0.82419 0.13183 6.25 <0.0001 1
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The equation of the ARIMA (1, 1, 0) model with intervention is expressed as:

	 (1-0.79943B1)Yt = -0.68236x1t + 0.51015x2t + 1.11607x3t - 0.58917x4t + 0.42211x5t + 
	 at

x1t = 1 si t  ³ 15 or other wise
x2t = 1 si t  ³ 17 or other wise
x3t = 1 si t  ³ 21 or other wise
x4t = 1 si t  ³ 27 or other wise
x5t = 1 si t  ³ 31 or other wise

To verify the overall sufficiency of the Box-Jenkins model, the residuals obtained from 
the models without and with intervention were analysed. The Ljung-Box Q+ (LBQ) 
statistic and its associated p-value proved the H0: et ~ RB (0, s2) null hypothesis. The 
autocorrelations up to a lag k are equal to zero for k values equal to 6, 12, 18, 24, and 30. 
The  random and independent data values —up to a certain number of lags— vs. the  
H

a
: et are not white noise. Abdulhafedh (2017) suggest that, if the Ljung-Box Q (LBQ) 

statistic is higher than a specified critical value, the autocorrelations for one or more 
lags could be significantly different from zero, indicating that the values are neither 
random nor independent in time.

Table 4. AR, MA, SBC, and AIC values of the identified ARIMA models with intervention (p, 1, q) and 
estimators for d

Î
. 

Best
ARIMA†

models

Lags Coefficients
SBCÞ AIC¤ d

ÎAR MA AR1,1¶ (p) MA1,1§ (q)

1.- (1, 1, 1) †a 1 1 0.82419 0.46266 23.67558 19.73499 0.285018
2.- (1, 1, 1) †b 1 1 0.88111 0.25647 -38.3316 -52.1237 0.137813
3.- (1, 1, 0) †c 1 0 0.79943 - -40.6168 -52.4386 0.138568

†ARIMA: Autoregressive Integrated Moving Average Process, †a ARIMA (1, 1, 1) model without 
intervention, †b ARIMA (1, 1, 1) model with intervention, †c ARIMA (1, 1, 0) model with intervention 
¶AR: Autoregressive coefficient of order (p), §MA: Moving average coefficient of order (q), ÞSBC: 
Schwarz Bayesian Criterion, ¤AIC: Akaike Information Criterion. d

Î
: Standard error of estimate.

Table 5. Model estimation for the AAPHL(1) time series by maximum likelihood with intervention.

Parameter Estimator Standard 
error Value of t Aprox.

Pr > |t| Lag Variable Displacement

AR1,1 0.79943 0.08486 9.42 <.0001 1 AAPHLog 0
NUM1 -0.68236 0.10721 -6.36 <.0001 0 LS_15 0
NUM2 0.51015 0.10722 4.76 <.0001 0 LS_17 0
NUM3 1.11607 0.10796 10.34 <.0001 0 LS_21 0
NUM4 -0.58917 0.10724 -5.49 <.0001 0 LS_27 0
NUM5 0.42211 0.10733 3.93 <.0001 0 LS_31 0
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The decision rule is the following: if the p-value < 0.05, H0 is rejected, but if the p-value 
> 0.05, H0 is not rejected. The first 6 k’ have p-values > 0.05; therefore, H0: r1 = r2 = r3 = 
r4 = r5 = r6  is not rejected. An a=0.05 value means that the process is purely random or 
white noise —this is, the residuals have a mean equal to zero. Therefore, a s2 = 0.01668   
constant variance means that there is no longer information about the dependence of 
some data on others over time (Table 6).
After estimating the parameters of both models, they were validated by residual 
analysis (Yafee and McGee, 2000). The estimated standardized residuals of these 
models should behave as an independent and identically distributed sequence, with 
a mean equal to zero and constant variance. However, the residuals of the model 
without intervention still present outliers in the ± 0.5 band, a sign that this model 
is being affected by outliers (Figure 4A). When the intervention is included in the 
model, the residuals oscillate by ±0.2, substantially improving the mean and constant 
variance (Figure 4B). The distribution of residuals without intervention approximates 
a normal slightly left-skewed leptokurtic distribution (Figure 4C). The model with 
intervention approximates a normal distribution, which indicates a great affinity of 
the data, regardless of their magnitude (Figure 4D).
The ACF of the residuals of the ARIMA (1, 1, 1) model showed data that fell outside the 
confidence band, a sign that there is still data dependency that can be modeled (Figure 
5A). The ACF of the residuals of the ARIMA (1, 1, 0) model with intervention shows 
that the autocorrelations fall within the confidence band (this is, they are close to zero). 
Consequently, the residuals did not show a significant deviation from a process of 
zero white noise and are random. Therefore, there is no longer information about the 
dependence of some data on others over time (Figure 5B).
The models estimated with and without intervention were used to make out-of-
sample predictions for the seven years following the last observation and to predict 
the montly AAPH values for the years 1967 to 2019 with great accuracy regarding the 
observed values; these values are located within the confidence band (± 95 % estimate).
According to the model estimation, the average prices of honey in Mexico paid to the 
producer in the medium term will have an upward behaviour and an average annual 
growth rate (AAGR) of 1.33 %. The AAPHs will range from MXN $ 46.69 to MXN $ 

Table 6. Verification of autocorrelation of white noise in the residuals of the AAPHL(1) series with 
intervention.

To 
lag

Chi-
squared DF Pr > 

ChiSq Autocorrelations

  6 7.65 6 0.2652 -0.195 0.082 -0.165 0.036 -0.115 0.207
12 9.81 12 0.6326 -0.116 0.036 0.075 -0.086 -0.029 -0.065
18 17.97 18 0.4576 -0.001 -0.015 0.250 -0.080 -0.064 -0.174
24 24.51 24 0.4326 0.039 -0.120 0.232 -0.037 -0.030 -0.009
30 30.07 30 0.4623 -0.036 -0.100 0.022 0.065 -0.071 0.159
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A B

C D

Figure 4. Graphical diagnostics used to evaluate the fit of the ARIMA (1, 1, 1) and ARIMA (1, 1, 0) models, based on the 
standardized residuals. A: Residuals of the model without intervention; B: Residuals of the model with intervention; C: 
Distribution of residuals without intervention; D: Distribution of residuals with intervention.

49.25 according to the ARIMA model without intervention. With the ARIMA model 
that includes the outliers, the AAPHs will fluctuate between MXN $ 47.49 and MXN 
$ 50.15. These results match the findings of Ramos and Pacheco (2016), who pointed 
out that the beekeeping sector is increasingly specialized and constantly improves the 
product, adding and diversifing value and, therefore, obtaining better international 
prices for honey. However, this implies greater incentives to marketers-exporters. In 
contrast, although the prices paid to producers have increased in recent years, they 
have not increased in the same proportion (Figure 6).



Agrociencia 2022. DOI: https://doi.org/10.47163/agrociencia.v56i3.2807
Scientific article 12

With the ARIMA models without and with intervention, the AAPHs were forecasted 
for the 1967-2019 period and these prices were compared with those of the AAPH 
series. The predictions had a mean absolute percentage error (MAPE) of 8.16 % for the 
model without intervention and 4.02 % for the model with intervention. This indicates 
that the second model, which included the outliers with special treatment that improve 
the statistical fit of the studied time series, improved the predictions of honey prices.

Figure 5. Graphical diagnostics used to evaluate the fit of the ARIMA (1, 1, 1) and ARIMA (1, 1, 0) models, based on the 
ACF of the residuals. A: Without intervention; B: With intervention.
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Figure 6. Average honey prices (observed and forecasted) paid to producers in Mexico, 2019 
(MXN $ kg-1). They were obtained through the ARIMA (1, 1, 1) and ARIMA (1, 1, 0) models with 
intervention, based on information provided by SIAP (2020) and FAO (2020).
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Compared to the ARIMA methodology, some research about vanilla production 
prediction in Mexico provided models with a 91.68 % forecast accuracy; Luis-Rojas 
et al. (2020), for example, reported an ARIMA (1, 1, 1) structure similar to the one 
proposed here.
Other production and price prediction models, which contemplate both ARIMA and 
SARIMA structures, are used to forecast white egg prices to Mexican producers, as 
well as the prices of vanilla and pork. Barreras-Serrano et al. (2014) and Luis-Rojas 
et al. (2019) point out that this methodology is only useful to establish short-term 
forecasts, suggesting that a greater accuracy could be achieved through the inclusion 
of exogenous variables through transfer function models; they also propose the use of 
multivariate models for long term forecasts.
Ruiz et al. (2019) used a SARIMA (2, 1, 0) X (1, 1, 0)s=12 model to make a 12-month 
forecast of the apple price, concluding that future apple prices show an upward trend. 
However, the authors suggest considering the limitation of the prediction, since the 
economic dynamics of prices will always be complex. Nevertheless, prediction can be 
a useful tool for decision-making.
Finally, the estimation of a unique and universally accepted model to understand the 
future prices of bee honey in Mexico is unrealistic and perhaps unnecessary since 
the international market demands honey from different blooming fields and regions. 
Therefore, the statistical agencies should provide increasingly specific information. 
However, this ARIMA (1, 1, 0) model with intervention explains, to a large extent, the 
panorama of the prices paid to honey producers in Mexico. In coincidence with the 
structure of the studied series, it can be understood and analysed, because it is well 
specified.

CONCLUSIONS
The series presents five structural changes with a trend break of the AAPHs (1966−1985, 
1986−1995, 1996−2003, 2004−2008, and 2009−2019), explained by the protection of the 
domestic market, the Africanization of hives, the presence of varroa, extreme climatic 
factors (hurricanes, droughts, etc.), and the appreciation of pollutant-free, organic, 
and transgenic-free honey in the foreign market.
The inclusion of outliers in the ARIMA model, which reduced the variance from 
0.08123 to 0.01920, resulted in a better prediction of the AAPH than the univariate 
ARIMA model without intervention.
The short-term predictions of the study series showed an 8.16 % and 4.02 % difference 
from the data observed with the ARIMA model without intervention and with 
intervention, respectively; in both cases the random error was minimized. The two 
models proposed explain the AAPH in Mexico, based on the AAPH from a previous 
period, which showed an upward trend in the medium term. Therefore, the demand 
displacement, based on the tastes and preferences of the consumer, explains the 
increase in prices, although the supply increase has not been a major factor, because 
the quantity produced has practically been very similar in the last 20 years.
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