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ABSTRACT
Multiple responses are often generated in agricultural and forestry research. For example, 
the moisture content, fatty acids, carbohydrates, size, diameter, length, shape, and hardness, 
among other characteristics, are measured in cottonseeds. Multivariate analysis of variance 
(MANOVA) can be useful for multiple response analysis when differences in treatment effects 
are to be determined. However, the performance of current post hoc tests in this context is not 
satisfactory due to the limitations of the available methods or because they are difficult to use 
for non-statistician researchers. Furthermore, this methodology requires the assumptions of 
multivariate normality and homogeneity of variance and covariance matrices, assumptions that 
are difficult to verify if the sample size is small. This research proposes an alternative analysis 
to test the hypothesis of equality of effects between treatments and post hoc tests in the case of 
multiple responses. An asymptotic result is demonstrated for the random variable generated in 
the proposal for the case of uncorrelated normal variables, and the case for correlated normal 
random variables is left open. A simulation study shows that the performance of the proposal 
with small samples is satisfactory in terms of power and that it has advantages compared to 
MANOVA. Furthermore, the methodological approach allows for post hoc testing in the case of 
multiple responses in the completely randomized experimental design.
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INTRODUCTION
The generation of multiple responses is common in research in a variety of areas. For 
example, Pérez-López et al. (2014) presented a study of fava bean cultivars where the 
following responses were recorded: plant height, number of branches, number of 
flower nodes, number of pods per plant, pod weight per plant, number of seeds per 
pod and per plant, total seed weight per plant, number of clean seeds per plant, and 
weight of clean seed per plant of 100 seeds and of spotted seed per plant. In other 
research, measurements of weight, color, texture, protein, fat, and vitamin content 
were obtained from a portion of chicken meat (Sosnówka-Czajka et al., 2023); the 
number of bacteria, pH, and fiber and vitamin content were obtained from cactus 
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(El-Mostafa et al., 2014; Hernández-Anguiano et al., 2016); and moisture content, fatty 
acids, carbohydrates, size, diameter, length, shape, and hardness were measured from 
cottonseed (Anitha et al., 2022).
Multivariate analysis of variance (MANOVA) is one methodology used to evaluate the 
hypothesis of equality of effects between two or more treatments when there are many 
responses. However, when MANOVA rejects the hypothesis of equal treatment effects, 
there are no satisfactory alternatives for post hoc testing. The methodology developed 
by Seo et al. (1994) was tested for a limited number of treatments and variables. This 
methodology requires the assumptions of multivariate normality, homogeneity 
of covariance matrices. Unfortunately, these assumptions are difficult to verify if 
the sample size is small (Hair, 1999; Dattalo, 2013). Moreover, such a methodology 
is difficult to implement for non-statistician researchers. Warne et al. (2012) found 
that 5 out of 62 articles that used MANOVA in educational psychology journals had 
correctly applied post hoc procedures. Furthermore, Warne (2014) screened the top 
three psychology journals and found that, in 58 articles, researchers used MANOVA 
between 2009 and 2013; however, none of these articles used post hoc procedures.
Much of the statistical methodology proposed for comparing multiple mean vectors 
is based on the T2

max statistic (Seo, 2002; Nishiyama et al., 2014). However, as argued 
by Nishiyama and Seo (2013) and Nishiyama et al. (2014), finding the distribution 
of the test statistic is difficult, even in the simplest cases of pairwise comparison of 
vector means, assuming normality. Hence, the upper quantiles of the statistic T2

max  
have been determined only for particular cases. For example, assuming normality in 
the data, Nishiyama and Seo (2013) determined the 0.9, 0.95, and 0.99 quantiles of the 
distribution of the T2

max statistic as part of their proposed methodology for testing four 
vectors of correlated means.
In this context, the present research paper proposes an alternative analysis for the 
determination of between-treatment effects and post hoc tests for the case of multiple 
responses. 

MATERIALS AND METHODS

Multiple response data generated in a completely randomized experimental design 
(CRD) can be modeled by the following: Yij = μ + τi + eij , where each component of 
the model is a p-dimensional vector: Yij = (Yij1, ..., Yijp)t is the random vector of response 
variables for the j-th repetition of the i-th treatment  i =1,..., t, j = 1, ... r, whose element 
Yijk corresponds to the k-th random variable, k = 1, ..., p; eij = (eij1, ..., eijp)t  is the vector of 
random errors; μ = (μ1, ..., μp)t  is the vector of overall means; and τi = (τi1, ..., τip)t  is the 
vector of effects of the i-th treatment. In practice, μ  and τi are unknown parameters 
(Rencher and Christensen, 2012).
The set of hypotheses used in the MANOVA is as follows:
H0: τ1 = τ2 = .. = τt  vs.  =  Ha: τi ≠ τj , for at least a i ≠ j.
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Johnson and Wichern (2007) stated that, in order for the data to meet the basic 
assumptions for the MANOVA result to be reliable, the observations must be random 
samples of size r of treatment i, the random samples of the treatments must be 
independent, and each treatment must have a multivariate normal distribution with a 
common variance and covariance matrix for all treatments, i.e: Yij  ~ Np (μi, Σ), where 
μi = (μ1 + τi1, ..., μp + τip)t .
If H0  is rejected, it is necessary to identify which treatments have different effects 
from each other; for this purpose, vector mean comparison methods are used. A very 
popular alternative is the Hotelling T2 method by applying the Bonferroni correction. 
However, this method is very conservative (Dattalo, 2013). Another is the generalized 
Tukey conjecture, developed by Seo et al. (1994) and Seo and Nishiyama (2008), which 
is a generalization of the univariate Tukey-Kramer methodology. In the procedure, 
confidence intervals are generated for the differences by pairs of mean vectors. This 
proposal has the limitation that it is only used for a maximum of four treatments, 
vectors with five variables, and 60 degrees of freedom (with υ = N - p - 1, degrees of 
freedom).
ANOVA is another methodology to determine treatment effects with a simpler model. 
For example, the CRD model, Yij = μ + τi + eij, which is similar to MANOVA; only 
the components are scalar, and its basic assumptions are independence, normality, 
and homoscedasticity (Montgomery, 2004). When any of the assumptions are not 
met, methods can be used to transform the data, such as the Box and Cox (1964) 
methodology, although Driscoll (1996) and Salkind (2010) agree that ANOVA is robust 
to non-normality of the data.
When the hypothesis of equality of treatments is rejected in an ANOVA, it is necessary 
to identify which treatments cause the difference. For this purpose, comparisons of 
means are carried out. Montgomery (2004) and Hinkelmann and Kempthorne (2005) 
mention that the main post hoc methods for such comparisons are the Fisher’s least 
significant difference (LSD), Tukey’s honest significant difference (HSD), Dunnett’s 
least significant difference (LSD), Duncan’s multiple range, and the Student-
Newman-Keuls (SNK) test. It should be noted that ANOVA has fewer limitations 
than MANOVA, as well as the development of several tests for comparison of means; 
however, ANOVA is not designed to analyze data with multiple responses. As a 
result, an alternate methodology is proposed for data from three or more treatments 
with various responses gathered through experimental designs.

Methodological proposal
The proposal is to reduce each vector of response variables to a scalar in order to 
obtain data that can be analyzed by means of an ANOVA and, subsequently, by means 
of a post hoc method to make a comparison of means.
It is proposed that each variable of the p-vector Yij be transformed with the quadratic 
function of the Euclidean norm as follows:

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝒀𝒀𝑖𝑖𝑖𝑖𝑡𝑡 𝒀𝒀𝑖𝑖𝑖𝑖 =∑𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑘𝑘=1
 	 (1)
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where Yijk is the k-th random variable (k = 1, ..., p) from vector Yij (Table 1).

Table 1. Use of the Euclidean norm in the data set.

Treatment Variable 1 ... Variable p Use of the square of the norm

1

y111 ... y11p

→

yt21
2 + ... + y11p

2
 = ║y11║

2 = x11

y121 ... y12p y121
2 + ... + y12p

2
 = ║y12║

2 = x12

:∙ :∙ :∙ :∙
 y1r1 y1rp y1r1

2 + ... + y1rp
2
 = ║y1r║

2 =x1r

:∙ :∙ :∙ :∙ :∙

t

yt11 ... yt1p yt11
2 + ... + yt1p

2
 = ║y11║

2 = xt1

yt21 ... yt2p yt21
2 + ... + yt2p

2
 = ║y12║

2 = xt2

:∙ :∙ :∙ :∙
ytr1 ytrp ytr1

2 + ... + ytrp
2
 = ║y1r║

2 = xtr

By transforming the data with multiple respBy transforming the data with multiple 
responses to a scalar value, a sequence of independent random variables Xij, is 
generated, which can be analyzed by means of an ANOVA. Each of the p characteristics 
is obtained from the same object, so they may correlate with each other. However, the 
sequence of variables Xij (Equation 1) and referring to the treatment i in its repetition 
j, can be considered independent because, a priori, the researcher must ensure the 
independence of them by randomization.
Now, note that Xij it is a sum of random variables, so the following central limit theorem 
for the sum of random variables can be applied:

Theorem 1: Let W1, W2, ..., Wn be a sample of n independent random variables with 
distribution functions F1, F2, ..., Fn, respectively, such that E (Wi) = μi  and Var(Wi) = σi

2 

for i = 1, ..., n, and 𝑠𝑠𝑛𝑛2 =∑𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
 , then:

𝑆𝑆𝑛𝑛∗ = 𝑠𝑠𝑛𝑛−1∑(𝑊𝑊𝑖𝑖 − 𝜇𝜇𝑖𝑖)
𝑑𝑑
→  𝑍𝑍

𝑛𝑛

𝑖𝑖=1
, 

where Z ~ N(0, 1) provided that the F is absolutely continuous with density function fi, 
such that the following, known as the Lindeberg condition, is satisfied:
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lim
𝑛𝑛→∞

𝑠𝑠𝑛𝑛−2∑∫ (𝑤𝑤 − 𝜇𝜇𝑖𝑖)2𝑓𝑓𝑖𝑖(𝑤𝑤)𝑑𝑑𝑑𝑑 = 0
𝑢𝑢

|𝑤𝑤−𝜇𝜇𝑖𝑖|>𝜖𝜖𝑠𝑠𝑛𝑛

𝑛𝑛

𝑖𝑖=1
, 

As the Lindeberg condition is met, the vector size (p) is sufficiently large, the variances 
of Xij are homogeneous for all i, and the conclusions obtained from the ANOVA will 
be valid. The expression “large enough” is controversial and should be taken with 
caution, because whether certain sample sizes are considered “large enough” depends 
on the shape of the original distribution (Correa-Londoño and Castillo-Morales, 2000). 
Although there are potentially many multivariate distributions, such that the vector 
p-variate Yij under the transformation (Equation 1) can meet the above conditions, the 
most typical case will be explored.

Case 1. Uncorrelated normal variables (theoretical result)
Since MANOVA works under the assumptions of multivariate normality and 
homogeneity of variances and covariances, these assumptions will be used as a starting 
point to apply the methodological proposal.

Assuming that the vector Yij has Np(μi, σi
2 Ip) distribution, the random variable 

generated from the squared function of the norm 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖𝑡𝑡  𝑌𝑌𝑖𝑖𝑖𝑖 = ∑𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑘𝑘=1
  has a non-

central chi-squared distribution, with mean p + λ and variance 2(p + 2λ), for p > 0 

which specifies the degrees of freedom and λ ≥ 0 which is the non-centrality parameter 
(Casella, 2008):

𝒀𝒀𝑖𝑖𝑖𝑖
𝑡𝑡 𝒀𝒀𝑖𝑖𝑖𝑖𝜎𝜎−2~𝜒𝜒𝑝𝑝2(𝜆𝜆), 𝜆𝜆 = 0.5𝝁𝝁𝑖𝑖

𝑡𝑡𝝁𝝁𝒊𝒊 𝜎𝜎−2. 

Even if the same Yij variance is assumed for all i, Xij have different variances because 
they depend on the mean of each treatment. Under this scenario, the random variables 
Xij do not follow a normal distribution and do not have homogeneous variances. 
Therefore, if Xij are used, the  ANOVA results will not be valid. However, if p is 
sufficiently large,  Xij may converge to the normal distribution, so it would be feasible 
to use the proposed methodology in this case.

Convergence demonstration for the case of uncorrelated variables

Let 𝑋𝑋𝑖𝑖𝑖𝑖 =∑𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑘𝑘=1
  be a random a random variable with 𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2 ) = 𝜇𝜇𝑖𝑖𝑖𝑖   and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2 ) = 𝑎𝑎𝑖𝑖𝑖𝑖2   

it can be assumed that there exists a constant a, such that: |aik|≤ a, since aik depends 

on μik and σ-2, so this assumption is reasonable for Case 1. On the other hand, 

∑𝑎𝑎𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑘𝑘=1
→ ∞, 𝑝𝑝 → ∞ , since the variances are always positive.
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Under these considerations it can be seen that

𝑠𝑠𝑝𝑝−2∑∫ (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2 − 𝜇𝜇𝑖𝑖𝑖𝑖)
2𝑓𝑓𝑌𝑌(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖2 )𝑑𝑑𝑑𝑑

.

|𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2 |>𝜀𝜀𝑠𝑠𝑝𝑝

𝑝𝑝

𝑘𝑘=1
≤ 𝑎𝑎2𝑠𝑠𝑝𝑝−2∑𝑃𝑃(|𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2 − 𝜇𝜇𝑖𝑖𝑖𝑖| > 𝜀𝜀𝑠𝑠𝑝𝑝),

𝑝𝑝

𝑘𝑘=1
 

where 𝜇𝜇𝑖𝑖𝑖𝑖 =  𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2 ) .

Applying Chebyshev’s inequality:

≤ 𝑎𝑎2𝑠𝑠𝑝𝑝−2∑𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2 )𝜀𝜀−2𝑠𝑠𝑝𝑝−2
𝑝𝑝

𝑖𝑖=1
 

≤ 𝑎𝑎2𝜀𝜀−2𝑠𝑠𝑝𝑝−2  → 0, 𝑝𝑝 → ∞ 

Therefore, the Lindeberg condition is hold, and so

𝑋𝑋𝑖𝑖𝑖𝑖~̇𝑁𝑁(∑(𝑝𝑝 + 0.5 𝜇𝜇𝑖𝑖𝑡𝑡𝜇𝜇𝑖𝑖𝜎𝜎−2)
𝑡𝑡

𝑖𝑖=1
, 2∑(𝑝𝑝 + 𝜇𝜇𝑖𝑖𝑡𝑡𝜇𝜇𝑖𝑖𝜎𝜎−2)

𝑡𝑡

𝑖𝑖=1
), 

if p es is large enough.

Furthermore, under the null hypothesis, the variances are homogeneous and, therefore, 
p is sufficiently large and Xij meet the assumptions of ANOVA.

Case 2. Correlated variables
If the vector Yij has a distribution Np (μi, Σ), the distribution of the random variable 

is not known 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝒀𝒀𝑖𝑖𝑖𝑖𝑡𝑡  𝒀𝒀𝑖𝑖𝑖𝑖 = ∑𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑘𝑘=1
  and remains open. However, in this case, a 

simulation study was conducted to examine the performance of the proposal in terms 
of MANOVA.

Performance assessment of the proposal for Case 1
Sometimes, the sample size does not need to be so large to obtain satisfactory 
convergence results, so a simulation study is presented to evaluate the proposal 
with sample sizes that usually appear in practice in the case of a CRD. To assess the 
power of the ANOVA using the transformed data, a Monte Carlo simulation study 
was performed, using 2000 replicates (B) and a significance level of 0.05, under the 
assumption that the multiple responses come from a multivariate normal distribution.
The simulation study was carried out with R software version 4.3.2 (R Core Team, 
2023). The parameters to be set in the simulation of multivariate normal distribution 
data were: 1) mean vectors for each treatment, where the main vector will bee μ1 and 
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from which the differences between mean vectors were generated; 2) the variance 
matrix, for which uncorrelated variable matrices were considered (Σ = Ip); 3) number 
of treatments, t = 3, 5, 7; 4) number of variables: p = 3, 5, 7; and 5) number of replicates 
per treatment, r = 4, 8, 12, 16.
The performance of the proposed methodology through power estimation was 
evaluated as follows: 1) select p, t y r; 2) generate a random sample with multivariate 
normal distribution for each treatment, with vector of means μi and a common variance 
matrix Σ in all treatments; 3) obtain the transformed variables Xij from the sample; 4) 
perform an ANOVA on the Xij and obtain the degrees of freedom of the treatments 
(glTrat), the degrees of freedom of the error (glTrat) and the mean square of the error 
(CME); 5) calculate the means of each treatment as: 𝑝𝑝 + 𝜇̂𝜇𝑖𝑖

𝑡𝑡𝜇̂𝜇𝑖𝑖 ; 6) calculate the average 
of the treatment means ((𝜇̂̅𝜇) ; 7) calculate the estimator of the non-centrality parameter, 

𝜆̂𝜆 = 𝑟𝑟∑(𝜇̂𝜇𝑖𝑖 − 𝜇̂̅𝜇)2
𝑡𝑡

𝑖𝑖=1
 𝐶𝐶𝐶𝐶𝐸𝐸

−1 ; 8) obtain pf  as the cumulative distribution function of 

the non-central F (𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝜆̂𝜆)) ; 9) obtain Fcritical as the quantile 1 - pf of the central F 

distribution 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  ; 10) estimate the power of the ANOVA as assessed 1 - pf in the 

Fcritical; 11) repeat B times steps 2–10; and 12) estimate the power as the proportion of 
times it was rejected in the H0 simulation.

Comparison of MANOVA results with the proposal using ANOVA
To compare the proposed methodology to the MANOVA, data with multivariate 
normal distribution were simulated by varying the following parameters of interest:

Vectors of means (μ´s)
To calculate the distance between the means of the elements in μ1, random numbers 
drawn from the uniform distribution using the runif function in R (R Core Team, 2023) 
were considered, so that it μ1 was contained in one of the following intervals: [1, 10] or 
[50, 100]. For example, in the case of  μ1 Î [1, 10] whit p = 3, μ1 = [2.9, 8.3, 5.7].
Between the mean vectors, two differences were considered between the μi´s. The small 
differences consist of differences between 10 and 20 % compared to μ1. e.g. μ2 = μ1 x 1.1 
(10 % difference to μ1). The large differences include very high percentages between 
the differences between the mean vectors, ranging from 50 to 300 % compared to μ1, 
e.g. μ2 = μ1 x 3 (300 % difference compared to μ1).

Covariance Matrices (Σ´s)
For uncorrelated variables (Case 1), Σ = σ2 Ip, considering σ2 = 1 or 10. In the case of 
correlated variables (Case 2), the genPositiveDefMat function of the clusterGeneration 
library (Qiu and Joe, 2023) was used to generate positive definite random variance 
and covariance matrices. With this function, two matrices were generated: one with 
variances in the range [1, 2] (together with their respective covariances) and another 
with variances in the range [8, 12] to emulate the variances in the matrices studied in the 
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case of uncorrelated variables, with the following conditions: number of treatments: 
t = 3,7; number of variables: p = 3,7; and number of replicates per treatment: r = 4,16.
The data were analyzed with MANOVA and the value of the approximation to the 
Pillai Trace statistic F (υH, υE) (Pillai and Samson, 1959) and the p - value. In cases of 
three treatments with three variables and four replicates, confidence intervals were 
obtained using Tukey’s generalized conjecture (Seo and Fujikoshi, 1994). In other 
cases, this determination could not be made due to the limited degrees of freedom.
The data were then transformed using the proposed methodology and analyzed 
using ANOVA for the CRD model. In this case, the assumptions of normality and 
homoscedasticity were checked for compliance with the Shapiro-Wilk (SW) (Shapiro 
and Wilk, 1965) and Levene (L) (Levene, 1960) tests. If the transformed data did not 
meet any of the assumptions, the Box-Cox transformation (Box and Cox, 1964) was 
performed. If ANOVA rejects the null hypothesis of equal treatment effects, the 
comparison of means was performed using Tukey’s test.

RESULTS AND DISCUSSION
The proposal to transform the vectors generated in a CRD into scalars and test the 
hypothesis of equal treatment effects with ANOVA performs satisfactorily in terms 
of power. There is a good performance of the test power with increasing sample size 
(Figures 1, 2, and 3), which is expected according to statistical theory (Casella, 2008; 
Hinkelmann and Kempthorne, 2005). As the number of variables (p) increases, the 
power of the test also increases, suggesting that the asymptotic result of convergence 
from the Xij normal distribution works with medium sample sizes. Finally, the results 
show that, as the maximum differences between the vectors increase, the power of the 
test increases, which is also the expected behavior (Casella, 2008).
When there are four repetitions to achieve a power greater than 0.8, the difference 
between the mean vectors is required to be at least 40 %. For the cases of 8, 12, and 16 
repetitions, this power is obtained when there is a 20 to 30 % difference between the 
mean vectors. It should be noted that this simulation study was much more extensive; 
however, only a small sample is presented to show the relevant aspects..

Comparison of MANOVA performance against the proposed methodology
The results of the performance comparison between the MANOVA and the 
methodology proposed in the test of the hypothesis of equal treatment effects are 
also satisfactory in the case of a CRD with multiple responses. The methodological 
approach in most cases detects smaller differences than the MANOVA (Table 2). In 
some cases, MANOVA cannot be used to analyze the data due to the limitations of the 
methodology (Table 3), because when r-1>p, the residual matrix W is not of full rank, 
and hence the test statistic Λ* = |W| / |B + W| used in MANOVA is not useful because 
|W| = 0 (Strang, 2006).
While the methodological proposal does not present such a problem, the multivariate 
case was transformed into the univariate case, and therefore the analysis in this case 
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Figure 1. Estimated powers for p = 3 (number of variables) in t = 3 (number of treatments) with 
r replicates per treatment: μ1 = [μ1, μ2, μ3]t, μ1 Î [1, 10], μ2 = (1 + escal [h]) x μ1, μ3 = (1 + escal [h]) x 
μ1; scal=[0, 0.01, 0.02, …,0.8], for h=1, 2,…; Σ = Ip; number of Monte Carlo samples B = 2000; level 
of significance used: α = 0.05.

Figure 2. Estimated powers for p = 5 (number of variables) in t = 3 (number of treatments) with r 
replicates per treatment: μ1 = [μ1, μ2, μ3, μ4, μ5]t, μ1 Î [1, 10], μ2 = (1 + escal [h]) x μ1, μ3 = (1 + escal 
[h]) x μ1 ; scal=[0, 0.01, 0.02, …,0.8], for h=1, 2,…; Σ = Ip; number of Monte Carlo samples B = 2000; 
level of significance used: α = 0.05.
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can be carried out. A satisfactory performance of the methodological approach can be 
observed when correlated observations are available (Table 4). When the maximum 
differences between the mean vectors are greater than 100 %, the MANOVA and the 
methodological approach reject the hypothesis of equal treatment effects, although the 
significance level is higher in the MANOVA. It was also observed that, in some cases, 
the transformed data did not meet the assumption of normality and generally met the 
assumption of homoscedasticity.
Often, the problem of non-compliance with the assumptions was solved with the Box-
Cox transformation. No changes in the significance of the MANOVA and ANOVA 
are observed when changing the variance and covariance matrix. In all cases studied, 
Tukey’s HSD methodology presented results in accordance with the simulation 
parameters. This research consisted of studying the parameters established in the 
methodology and generating results with simulation in 46 tables, although only a 
sample is presented here in order to show the relevant aspects.
The results of using the proposed methodology to test the hypothesis of equality 
of treatments with multiple responses generated by a CRD with correlated normal 
variables are satisfactory. This methodology could be applied to the case of other 
experimental designs after investigating their performance through simulation.

 
Figure 3. Estimated powers for p = 7 (number of variables) in t = 3 (number of treatments) with 
r replicates per treatment: μ1 = [μ1, μ2, μ3, μ4, μ5, μ6, μ7]t, μ1 Î [1, 10], μ2 = (1 + escal [h]) x μ1, μ3 = 
(1 + escal [h]) x μ1; scal=[0, 0.01, 0.02, …,0.8], for h=1, 2,…; Σ = Ip; number of Monte Carlo samples 
B = 2000; level of significance used: α = 0.05.
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Table 2. Comparisons for case t = 3 (number of treatments), p = 3 (number of variables), r = 4 (number of replicates per 
treatment), and small differences between μ’i

s.

μ Σ
MANOVA

~FυH, υE

Tukey’s generalised 
conjecture

Transformed data
p - value

ANOVA
~Fυ1, υ2

HSD Tukey

Pr (> F) SW L Pr (> F)

μ1 = [2.9, 8.3, 5.7]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

I3
1.638
0.201

T1 vs. T2: [-10.8, 7.4]
T1 vs. T3: [-12.5, 5.7]
T2 vs. T3: [-10.8, 7.4]

0.0201 0.960 5
0.035

T3 662.025 a
T2 519.346 ab
T1 398.076 b

μ1 = [90.3, 57.6, 82.3]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

I3
2.663
0.055

T1 vs. T2: [-32.1, 13.8]
T1 vs. T3: [-55.1, -36.8]
T2 vs. T3: [- 32.1, 13.8]

0.0318 0.954 597.2
2.7 x 10-10 

T3 33 811.123 a
T2 23 828.921 b
T1 16 239.583 c

μ1 = [2.9, 8.3, 5.7]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

10 * I3
0.366
0.890

T1 vs. T2: [-30.6, 27.2]
T1 vs. T3: [-32.3, 25.5]
T2 vs. T3: [- 30.6, 27.2]

0.0654 0.909 0.705
0.519

No significant 
difference

μ1 = [90.3, 57.6, 82.3]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

10 * I3
2.633
0.057

T1 vs. T2: [-51.9, 5.9]
T1 vs. T3: [-74.9, -17.0]
T2 vs. T3: [- 51.9, 5.9]

0.0351 0.9517 61.29
5.73 x 10-6 

T3 32 397.475 a
T2 22 749.481 b
T1 15 437.039 c

Table 3. Comparisons for case t = 3 (number of treatment), p = 7 (number of variables), r = 4 (number of replicates per 
treatment), small differences between μ’i

s.

μ Σ
MANOVA

~FυH, υE

Transformed data
p - value

ANOVA
~Fυ1, υ2

HSD Tukey

Pr (> F) SW L Pr (> F)

μ1 = [2.9, 8.3, 5.7, 7.6, 1.3, 6.0, 9.5]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

I7

Residuals 
have rank

3 < 7
0.056 0.971 28.14

0.0001

T3 411.386 a
T2 345.129 b
T1 284.782 c

μ1 = [21.6, 5.9, 14.1, 8.1, 17.5, 23.7, 5.7]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

I7

Residuals 
have rank

3 < 7
0.2872 0.9494 413.5

1.39 x 10-9 

T3 2332.021 a
T2 1954.931 b
T1 1611.166 c

μ1 = [2.9, 8.3, 5.7, 7.6, 1.3, 6.0, 9.5]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

10 * I7

Residuals 
have rank

3 < 7
0.112 0.973 2.111

0.177

No significant 
difference

μ1 = [21.6, 5.9, 14.1, 8.1, 17.5, 23.7, 5.7]
μ2 = μ1 ´ 1.1
μ3 = μ1 ´ 1.2

10 * I7

Residuals 
have rank

3 < 7
0.050 0.905 32.34

7.78 x 10-5 

T3 2229.853 a
T2 1866.041 b
T1 1535.553 c
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CONCLUSIONS
In this research, an alternative analysis was proposed to test the hypothesis of 
equality of effects between treatments and post hoc tests in the case of multiple 
responses. The simulation study shows that the performance of the proposal with 
small samples is satisfactory in terms of power and that it has advantages compared 
to MANOVA. Furthermore, the methodological approach allows for post hoc testing 
in the case of multiple responses in the completely randomized experimental design. 
The transformed data, from the proposed methodology, have problems holding the 
normality assumption when the number of variables (p) is relatively small, which is 
usually solved by the Box-Cox transformation. 
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